完全平方公式教学设计范文 完全平方公式教学设计通用

作为一名教师,进行教案的编写工作是必不可少的。教案的编写有利于我们科学、合理地支配课堂时间,实现教程以及课程课标的要求,有助于学生理解并掌握系统的知识,让自己的教学水平得到提升。那么我们该如何撰写一份优秀的教案呢,接下来请和小编一起看看完全平方公式教学设计范文吧。

完全平方公式教学设计范文 完全平方公式教学设计通用

完全平方公式教学设计范文1

教学目标

  1、使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;

  2、理解完全平方式的意义和特点,培养学生的判断能力。

  3、进一步培养学生全面地观察问题、分析问题和逆向思维的能力。

  4、通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

  教学重点和难点

  重点:运用完全平方式分解因式。

  难点:灵活运用完全平方公式公解因式。

  教学过程设计

  一、复习

  1、问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

  答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解。我们学过的因式分解的方法有提取公因式法及运用平方差公式法。

  2、把下列各式分解因式:

  (1)ax4-ax2 (2)16m4-n4。

  解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

  (2) 16m4-n4=(4m2)2-(n2)2

  =(4m2+n2)(4m2-n2)

  =(4m2+n2)(2m+n)(2m-n)。

  问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

  答:有完全平方公式。

  请写出完全平方公式。

  完全平方公式是:

  (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。

  这节课我们就来讨论如何运用完全平方公式把多项式因式分解。

  二、新课

  和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到

  a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式。运用这两个式子,可以把形式是完全平方式的多项式分解因式。

  问:具备什么特征的多项是完全平方式?

  答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式。

  问:下列多项式是否为完全平方式?为什么?

  (1)x2+6x+9; (2)x2+xy+y2;

  (3)25×4-10×2+1; (4)16a2+1。

  答:(1)式是完全平方式。因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以

  x2+6x+9=(x+3) 。

  (2)不是完全平方式。因为第三部分必须是2xy。

  (3)是完全平方式。25x =(5x ) ,1=1 ,10x =2·5x ·1,所以

  25x -10x +1=(5x-1) 。

  (4)不是完全平方式。因为缺第三部分。

  请同学们用箭头表示完全平方公式中的a,b与多项式9×2+6xy+y2中的对应项,其中a=?b=?2ab=?

  答:完全平方公式为:

  其中a=3x,b=y,2ab=2·(3x)·y。

  例1 把25×4+10×2+1分解因式。

  分析:这个多项式是由三部分组成,第一项“25×4”是(5×2)的平方,第三项“1”是1的平方,第二项“10×2”是5×2与1的积的2倍。所以多项式25×4+10×2+1是完全平方式,可以运用完全平方公式分解因式。

  解 25×4+10×2+1=(5×2)2+2·5×2·1+12=(5×2+1)2。

  例2 把1- m+ 分解因式。

  问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

  答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“ ”是 的平方,第二项“- m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式。

  解法1 1- m+ =1-2·1· +( )2=(1- )2。

  解法2 先提出 ,则

  1- m+ = (16-8m+m2)

  = (42-2·4·m+m2)

  = (4-m)2。

  三、课堂练习(投影)

  1、填空:

  (1)x2-10x+( )2=( )2;

  (2)9×2+( )+4y2=( )2;

  (3)1-( )+m2/9=( )2。

  2、下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多

  项式改变为完全平方式。

  (1)x2-2x+4; (2)9×2+4x+1; (3)a2-4ab+4b2;

  (4)9m2+12m+4; (5)1-a+a2/4。

  3、把下列各式分解因式:

  (1)a2-24a+144; (2)4a2b2+4ab+1;

  (3)19×2+2xy+9y2; (4)14a2-ab+b2。

  答案:

  1、(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2。

  2、(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式。

  (2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9×2+6x+1,它是完全平方式。

  (3)是完全平方式,a2-4ab+4b2=(a-2b)2。

  (4)是完全平方式,9m2+12m+4=(3m+2) 2。

  (5)是完全平方式,1-a+a2/4=(1-a2)2。

  3、(1)(a-12) 2; (2)(2ab+1) 2;

  (3)(13x+3y) 2; (4)(12a-b)2。

  四、小结

  运用完全平方公式把一个多项式分解因式的主要思路与方法是:

  1、首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解。有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解。

  2、在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2。

  五、作业

  把下列各式分解因式:

  1、(1)a2+8a+16; (2)1-4t+4t2;

  (3)m2-14m+49; (4)y2+y+1/4。

  2、(1)25m2-80m+64; (2)4a2+36a+81;

  (3)4p2-20pq+25q2; (4)16-8xy+x2y2;

  (5)a2b2-4ab+4; (6)25a4-40a2b2+16b4。

  3、(1)m2n-2mn+1; (2)7am+1-14am+7am-1;

  4、(1) x -4x; (2)a5+a4+ a3。

  答案:

  1、(1)(a+4)2; (2)(1-2t)2;

  (3)(m-7) 2; (4)(y+12)2。

  2、(1)(5m-8) 2; (2)(2a+9) 2;

  (3)(2p-5q) 2; (4)(4-xy) 2;

  (5)(ab-2) 2; (6)(5a2-4b2) 2。

  3、(1)(mn-1) 2; (2)7am-1(a-1) 2。

  4、(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。

  课堂教学设计说明

  1、利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。

  2、本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法。在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点。例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法。

完全平方公式教学设计范文2

一、内容简介

  本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

  关键信息:

  1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

  2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

  二、学习者分析:

  1、在学习本课之前应具备的基本知识和技能:

  ①同类项的定义。

  ②合并同类项法则

  ③多项式乘以多项式法则。

  2、学习者对即将学习的内容已经具备的水平:

  在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

  三、教学/学习目标及其对应的课程标准:

  (一)教学目标:

  1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

  2、会推导完全平方公式,并能运用公式进行简单的计算。

  (二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

  数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

  (四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同

  角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

  (五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难

  和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

  四、教育理念和教学方式:

  1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

  教学是师生交往、积极互动、共同发展的过程。当学生迷路的时

  候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

  2、采用“问题情景—探究交流—得出结论—强化训练”的模式

  展开教学。

  3、教学评价方式:

  (1)通过课堂观察,关注学生在观察、总结、训练等活动中的主

  动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

  (2)通过判断和举例,给学生更多机会,在自然放松的状态下,

  揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

  (3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的

  教学效果。

  五、教学媒体:多媒体六、教学和活动过程:

  教学过程设计如下:

  〈一〉、提出问题

  [引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

  (2m+3n)2=_______________,(-2m-3n)2=______________,

  (2m-3n)2=_______________,(-2m+3n)2=_______________。

  〈二〉、分析问题

  1、[学生回答]分组交流、讨论

  (2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

  (2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

  (1)原式的特点。

  (2)结果的项数特点。

  (3)三项系数的特点(特别是符号的特点)。

  (4)三项与原多项式中两个单项式的关系。

  2、[学生回答]总结完全平方公式的语言描述:

  两数和的平方,等于它们平方的和,加上它们乘积的两倍;

  两数差的平方,等于它们平方的和,减去它们乘积的两倍。

  3、[学生回答]完全平方公式的数学表达式:

  (a+b)2=a2+2ab+b2;

  (a-b)2=a2-2ab+b2.

  〈三〉、运用公式,解决问题

  1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

  (m+n)2=____________,(m-n)2=_______________,

  (-m+n)2=____________,(-m-n)2=______________,

  (a+3)2=______________,(-c+5)2=______________,

  (-7-a)2=______________,(0.5-a)2=______________.

  2、判断:

  ()①(a-2b)2=a2-2ab+b2

  ()②(2m+n)2=2m2+4mn+n2

  ()③(-n-3m)2=n2-6mn+9m2

  ()④(5a+0.2b)2=25a2+5ab+0.4b2

  ()⑤(5a-0.2b)2=5a2-5ab+0.04b2

  ()⑥(-a-2b)2=(a+2b)2

  ()⑦(2a-4b)2=(4a-2b)2

  ()⑧(-5m+n)2=(-n+5m)2

  3、小试牛刀

  ①(x+y)2=______________;②(-y-x)2=_______________;

  ③(2x+3)2=_____________;④(3a-2)2=_______________;

  ⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

  ⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

  〈四〉、[学生小结]

  你认为完全平方公式在应用过程中,需要注意那些问题?

  (1)公式右边共有3项。

  (2)两个平方项符号永远为正。

  (3)中间项的符号由等号左边的两项符号是否相同决定。

  (4)中间项是等号左边两项乘积的2倍。

  〈五〉、冒险岛:

  (1)(-3a+2b)2=________________________________

  (2)(-7-2m)2=__________________________________

  (3)(-0.5m+2n)2=_______________________________

  (4)(3/5a-1/2b)2=________________________________

  (5)(mn+3)2=__________________________________

  (6)(a2b-0.2)2=_________________________________

  (7)(2xy2-3x2y)2=_______________________________

  (8)(2n3-3m3)2=________________________________

  〈六〉、学生自我评价

  [小结]通过本节课的学习,你有什么收获和感悟?

  本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

  〈七〉[作业]P34随堂练习P36习题

完全平方公式教学设计范文3

总体说明:

  完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.

  本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.

  一、学生学情分析

  学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.

  学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.

  二、教学目标

  知识与技能:

  (1)让学生会推导完全平方公式,并能进行简单的应用.

  (2)了解完全平方公式的几何背景.

  数学能力:

  (1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.

  (2)发展学生的数形结合的数学思想.

  情感与态度:

  将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.

  三、教学重难点

  教学重点:1、完全平方公式的推导;

  2、完全平方公式的应用;

  教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;

  2、完全平方公式结构的认知及正确应用.

  四、教学设计分析

  本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.

  第一环节:学生练习、暴露问题

  活动内容:计算:(a+2)2

  设想学生的做法有以下几种可能:

  ①(a+2)2=a2+22

  ②(a+2)2=a2+2a+22

  ③正确做法;

  针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?

  活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:

  (a+2)2=a2+22,如果不将这种定式思维*,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.

  第二环节:验证(a+2)2=a2–4a+22

  活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22

  活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.

  第三环节:推广到一般情况,形成公式

  活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

  活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.

  第四环节:数形结合

  活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?

  展示动画,用几何图形诠释完全平方公式的几何意义.

  学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)

  活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.

  第五环节:进一步拓广

  活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2

  方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

  方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

  活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.

  第六环节:总结口诀、认识特征

  活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2

  (a–b)2=a2–2ab+b2

  特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;

  ②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)

  口诀:首平方,尾平方,首尾相乘的两倍在中央.

  活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.

  第七环节:公式应用

  活动内容:例:计算:①(2x–3)2;②(4x+)2

  解:①(2x–3)2=(2x)2–2•(2x)•3+32=4×2–12x+9

  ②(4x+)2=(4x)2+2•••••(4x)()+()2=16×2+2xy+

  活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.

  第八环节:随堂练习

  活动内容:计算:①;②;③(n+1)2–n2

  活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.

  第九环节:学生PK

  活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.

  活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.

  第十环节:学生反思

  活动内容:通过今天这堂课的学习,你有哪些收获?

  收获1:认识了完全平方公式,并能简单应用;

  收获2:了解了两数和与两数差的完全平方公式之间的差异;

  收获3:感受到数形结合的数学思想在数学中的作用.

  活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.

  第十一环节:布置作业:

  课本P43习题1.13

完全平方公式教学设计范文4

一、内容分析

完全平方公式是七年级下册8.3的内容。乘法公式是在学习了单项式乘法、多项式乘法之后学习的,是特殊形式多项式乘法结果的一种归纳和总结,并且将这种结果应用于形式相同的多项式相乘,达到简化计算的目的,乘法公式是初中代数中运用推理方法进行代数式恒等变形的开端也是学习因式分解和分式运算的重要基础。

二、教学目标:

1、能根据多项式的乘法推导出完全平方公式;

2、理解并掌握完全平方公式,并能进行计算;

3、进一步体会转化、数形结合等思想方法。

三、教学重难点

重点:体会公式的发现和推导过程

难点:能运用公式进行简单的计算

四、教学过程设计

教学过程:

(-)导入新课:

请同学们回忆多项式乘法法则并用多项式的乘法法则计算:

(a+b)2=

(a-b) 2=

说明:

乘法公式实际是几个特殊形式的多项式乘法结果,让学生知道公式的来历.

多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.

(二)新课讲解:

总结:上述两个公式可以直接用于计算.我们把①和②称为完全平方公式.

思考:你能用语言表述这两个公式吗?

语言叙述:

完全平方公式的语言叙述:两个数的和(或差) 的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.

口诀:首平方,尾平方,首尾乘积2倍放中央。

几何意义:

两个数的和的平方相乘

两个数的差的平方相乘

观看洋葱视频:《完全平方公式》

观看洋葱视频的目的:洋葱视频以动画的方式,诙谐幽默的语言讲解枯燥乏味的知识点,可以吸引学生的学习兴趣,让学生可以沉浸其中,积极主动学习。

三、巩固练习

观看完视频之后分别给出问题1、2、3

教师活动:根据问题的难易程度点名让学生回答问题,简单的题可以点名基础较差的后进生,难度较大的题点名基础比较好的同学。

目的:让每个学生都能参与到这个教学活动中来,根据不同学生的认知水平、学习能力以及自身素质,选择适合每个学生特点的学习方法来有针对性的教学,发挥学生的长处,弥补学生的不足,激发学生学习的兴趣,树立学生学习的信心。

教师活动:分步演示计算过程

学生活动:学习完全平方公式的应用,明确字母a,b在式子中具体表示什么。

四、目标回顾

教师活动:请同学们回顾本节课学习了哪些内容?有哪些收获

学生活动:经历思考和讨论后,用自己的语言回答

设计意图:让学生反思自己的学习过程,梳理本节课的知识。

五、布置作业

1.必做作业:

课本第69页的练习第一题和第71页的习题8.3的第1题

2.选做作业:

已知x+y=3,xy=1.求x

教学反思:

本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现漏掉中间那项的错误,为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,首尾乘积两倍放中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆。

完全平方公式教学设计范文5

一、 教材分析

  1、教材的地位和作用

  本节教材是初中数学七年级下册第一章第八节的内容,是初中数学的重要内容之一。一方面,这是在学习了整式的加、减、乘、除及平方差公式的基础上,对多项式乘法的进一步深入和拓展;另一方面,又为学习《因式分解》《配方法》等知识奠定了基础,是进一步研究《一元二次方程》《二次函数》 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

 2、学情分析

  从心理特征来说,初中阶段的学生逻辑思维能力有待培养,从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  从认知状况来说,学生在此之前已经学习了多项式乘法法则、平方差公式的探索过程,对“完全平方公式”已经有了初步的认识,为顺利完成本节课的教学任务打下了基础,但对于“完全平方公式” 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

 3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

  对公式(a+b) 2=a2+2ab+b2的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释。

  难点确定为:从广泛意义上理解完全平方公式的符号含义,培养学生有条理的思考和语言表达能力。

二、 教学目标分析

新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:

  1. 经历探索完全平方公式的过程,进一步发展符号感和推理能力。会推导完全平方公式,并能运用公式进行简单的运算。

  2.在探索讨论、归结总结中,培养学生语言表达能力、逻辑思维能力。

  3. 主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生积极参与对数学问题的讨论并敢于表达自己的观点。

 三、 教学方法分析

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

四、教学过程分析

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习旧知,温故知新

  设计意图:建构注意主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘

  情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出, 的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里, 观察分析、独立思考、小组交流 等活动,引导学生归纳 。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其内涵和外延(条件、结论、应用范围等) ,对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入下一 环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验等几个方面进行归纳,我设计了这么三个问题:

  ① 本节课的学习,你学会了哪些知识;

  ② 本节课的学习,你最大的体验是什么;

  ③ 本节课的学习,你掌握了哪些学习数学的方法?

  (7) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。

完全平方公式教学设计范文6

教学目标

  1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.

  2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.

  3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.

  教学重难点

  教学重点:

  1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.

  2、会运用公式进行简单的计算.

  教学难点:

  1、完全平方公式的推导及其几何解释.

  2、完全平方公式的结构特点及其应用.

  教学工具

  课件

  教学过程

  一、复习旧知、引入新知

  问题1:请说出平方差公式,说说它的结构特点.

  问题2:平方差公式是如何推导出来的?

  问题3:平方差公式可用来解决什么问题,举例说明.

  问题4:想一想、做一做,说出下列各式的结果.

  (1)(a+b)2(2)(a-b)2

  (此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)

  二、创设问题情境、探究新知

  一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)

  (1)四块面积分别为:、、、;

  (2)两种形式表示实验田的总面积:

  ①整体看:边长为的大正方形,S=;

  ②部分看:四块面积的和,S=.

  总结:通过以上探索你发现了什么?

  问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?

  问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证.

  (教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)

  问题3:你能说说(a+b)2=a2+2ab+b2

  这个等式的结构特点吗?用自己的语言叙述.

  (结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)

  问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.

  总结:我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式.

  问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?

  语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.

  强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.

  三、例题讲解,巩固新知

  例1:利用完全平方公式计算

  (1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

  解:(2x-3)2=(2x)2-2o(2x)o3+32

  =4×2-12x+9

  (4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

  =16×2+40xy+25y2

  (mn-a)2=(mn)2-2o(mn)oa+a2

  =m2n2-2mna+a2

  交流总结:运用完全平方公式计算的一般步骤

  (1)确定首、尾,分别平方;

  (2)确定中间系数与符号,得到结果.

  四、练习巩固

  练习1:利用完全平方公式计算

  练习2:利用完全平方公式计算

  练习3:

  (练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)

  五、变式练习

  六、畅谈收获,归纳总结

  1、本节课我们学习了乘法的完全平方公式.

  2、我们在运用公式时,要注意以下几点:

  (1)公式中的字母a、b可以是任意代数式;

  (2)公式的结果有三项,不要漏项和写错符号;

  (3)可能出现①②这样的错误.也不要与平方差公式混在一起.

  七、作业设置

完全平方公式教学设计范文7

授课教师:

  授课时间:

  课型: 新授

  课题:3.4探究实际问题与一元一次方程组

  教学目标基础知识: 掌握一元一次方程得解法,了解销售中的数量关系。

  基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。

  基本思想

  方法:通过将实际问题转化成数学问题,培养学生的建模思想;

  基本活动经验体会解决实际问题的一般步骤及盈亏中的关系

  重点探索并掌握列一元一次方程解决实际问题的方法,

  教学

  难点找出已知量与未知量之间的关系及相等关系。

  教具资料准备教师准备:课件

  学生准备:书、本

  教 学 过 程自备

  补充集备

  补 充

  一、创设情景 引入新课

  观察图片引课(见大屏幕)

  二、探究

  探究销售中的盈亏问题:

  1、商品原价200元,九折出售,卖价是 元.

  2、商品进价是30元,售价是50元,则利润

  是 元.

  2、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是 元.

  3、某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为 元.

  4、某商品按定价的八折出售,售价是14.8元,则原定售价是 。

  (学生总结公式)

  熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系

  三、探究一

  某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25?,另一件亏损25?,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

  分析:售价=进价+利润

  售价=(1+利润率)×进价

  练习(1)随州某琴行同时卖出两台钢琴,每台售价为960元。其中一台盈20%,另一台亏损20%。这次琴行是盈利还是亏损,或是不盈不亏?

  (2)某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?

  (3)某商场把进价为1980元的商品按标价的八折出售,仍获利10%, 则该商品的标价为 元.

  注:标价×n/10=进(1+率)

  (4)2、我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨价30%后,2007降价70%至a元,

  则这种药品在2005年涨价前价格为 元。

  四、小结

  通过本节课的学习你有哪些收获?你还有哪些疑惑?

  亏损还是盈利对比售价与进价的关系才能加以判断

  小组研究解决提出质疑

  优生展示讲解质疑

  五、作业布置:

  板书设计 一元一次方程的应用—–盈亏问题

  相关的关系式: 例题

  课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。

完全平方公式教学设计范文8

内容:8.3完全平方公式与平方差公式(2)P64–67

  课型:

  新授日期:

  学习目标:

  1、经历探索平方差公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。

  2、会推导平方差公式,了解公式的几何背景,会用公式计算。

  3、进一步体会数形结合的数学思想和方法。

  学习重点:会推导平差方公式,并能运用公式进行简单的计算。

  学习难点:掌握平方差公式的结构特征,理解公式中a、b的广泛含义。

  学习过程:

  一、学习准备

  1、利用多项式乘以多项式计算:

  (1) (a+1)(a-1)

  (2) (x+y)(x-y)

  (3) (3a+2b)(3a-2b)

  (4) (0.2x+0.04y)(0.2x-0.04y)

  观察以上算式及运算结果,你发现了什么?再举两例验证你的发现。

  2、以上算式都是两个数的和与这两个的差相乘,运算结果是这两个数的平方的差。我们把这样特殊形式的多项式相乘,称为平方差公式,以后可以直接使用。

  平方差公式用字母表示为:(a+b)(a-b)=a2-b2

  尝试用自己的语言叙述平方差公式:

  3、平方差公式的几何意义:阅读课本65页,完成填空。

  4、平方差公式的结构特征:(a+b)(a-b)=a2-b2

  左边是两个二项式相乘,两个二项式中的项有什么特点?右边的结果与左边的项有什么关系?

  注意:公式中字母的含义广泛,可以是 ,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□+○)(□-○)=□2-○2

  5、判断下列算式能否运用平方差公式。

  (1) (x+y)(-x-y) (2) (-y+x)(x+y)

  (3) (x-y)(-x-y) (4) (x-y)(-x+y)

  二、合作探究

  1、利用乘法公式计算:

  (1) (2m+3)(2m-3) (2) (-4x+5y)(4x+5y)

  分析:要分清题目中哪个式子相当于公式中的a (相同的一项) ,哪个式子相当于公式中的b (互为相反数的一项)

  2、利用乘法公式计算:

  (1) 999×1001 (2)

  分析:要利用完全平方公式,需具备完全平方公式的结构,所以999×1001可以转化为( )× ( ), 可以转化为( )×( )

  3、利用乘法公式计算:

  (1) (x+y+z)(x+y-z) (2) (a-2b+3c)(a+2b-3c)

  三、学习体会

  对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?

  四、自我测试

  1、下列计算是否正确,若不正确,请订正;

  (1) (x+2)(2-x)=x2-4

  (2) (2x+y2)(2x-y2)=2×2-y4

  (3) (3×2+1)(3×2-1)=9×2-1

  (4) (x+2)(x-3)=x2-6

  2、利用乘法公式计算:

  (1) (m+n)(m-m)+3n2 (2) (a+2b)(a-2b)(a2+4b4)

  (3)1007×993 (4) (x+3)2-(x+2)(x-1)

  4、先化简,再求值;

  (-b+a)(a+b)+(a+b)2-2a2,其中a=3,b=

  五、思维拓展

  1、如果x2-y2=6,x+y=3,则x-y=

  2、计算:20072-4014×2008+20082

  3、计算:123462-12345×12347

完全平方公式教学设计范文9

课 题:第十章 二元一次方程组课时分配本课(章节)需 1 课时

  本 节 课 为: 第 1 课时

  为 本 学期:总第 课时

  练习课

  目标:

  1、这一章的学习,使学生掌握二元一次方程组的解法。

  2、学会解决实际问题,分析问题能力有所提高。

  重 点:这一章的知识点,数学方法思想。

  难 点:实际应用问题中的等量关系。

  方法讲练结合、探索交流课型新授课教具投影仪

  全章小结

  四人一小组,互相交流学习这一章的感觉,主要学习了哪些知识。还有不懂的方面?感到困难的部分是什么?

  方案<一> 基本练习题

  1、下列各组x,y的值是不是二元一次方程组的解?

  (1) (2) (3)

  2、根据下表中所给的x值以及x与y的关系式,求出相应的y值,然后填入表内:

  x12345678910

  Y=4x

  Y=10-x

  根据上表找出二元一次方程组的 的解。

  3、已知二元一次方程组 的解

  求a,b的值。

  4、解二元一次方程

  (1) (2)

  方案〈二〉

  1.根据已知条件,求出y的值,分别填入下列各图中,并找出方程组 的解。

  2.写出一个二元一次方程,使得 都是它的解,并且求出x=3时的方程的解。

  3.已知三角形的周长是18cm,其中两边的和等于第三边的2倍,而这两边的差等与第三边的 ,求这个三角形的各边长。

  设三边的长分别是xcm,ycm,zcm

  那么你会解这个方程组吗?

  方案〈三〉

  1、有甲、乙两种铜银合金,甲种含银25%,乙种含银37.5%,现在要熔成含银30%的合金100千克,这两种合金各取多少千克?

  2、甲、乙两地之间路程为20km,A,B两人同时相对而行,2小时后相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2km,求A,B两人速度。

  3、小亮在匀速行驶的汽车里,注意到公路里程碑上的数是两位数;1h后看到里程碑上的数与第一次看到的两位数恰好颠倒了数字顺序;再过1h后,第三次看到的里程碑上的数字又恰好是第一次见到的数字的两位数的数字之间添加一个0的三位数,这3块里程碑上的数各是多少?

  教学素材:

  A组题:

  1.已知x+y+(x-y+3)2=0,求x,y的值。

  2.若3m-2n-7=0,则6n-9m-6是多少?

  3.解方程组

  (1)

  (2)

  4、用白铁皮做盒子,每张铁皮可生产12个盒身或18个盒盖,现有49张铁皮,怎样安排生产盒身和盒盖的铁皮张数,才使生产的盒身与盒盖配套(一张铁皮只能生产一种产品,一个盒身配两个盒盖)?

  5、给定两数5与3,编一道通过列出二元一次方程组来求解的应用题,并使得这个方程的解就是这两个数。

  B组题:

  1、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售,每吨可获取利润500元,制成酸奶销售,每吨可获利润1200元,制成奶片销售,每吨可获利润2000元,该工厂的生产能力为:如制成酸奶,每天可加工3吨,制成奶片每天可加工1吨,受人员限制,两种加工方式不能同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕,为此,该加工厂设计了两种可行性方案:

  方案一:尽可能多的制成奶片,其余直接销售鲜牛奶。

  方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。

  你认为选择哪种方案获利最多,为什么。

  2、在解方程组 时,由于粗心,甲看错了方程组中的a,而得解为 ,乙看错了方程组中的b,而得解为 ,

  (1)甲把a看成了什么,乙把b看成了什么

  (2)求出原方程组的正确解。

  学生充分发表意见再根据学生的意见采用方法。

  学生板演

  作业P103 9 10

  P124 13 14

  板 书 设 计

  方案一 方案二 方案三

完全平方公式教学设计范文10

一、学习目标

  会运用完全平方公式进行一些数的简便运算

  二、学习重点

  运用完全平方公式进行一些数的简便运算

  三、学习难点

  灵活运用平方差和完全平方公式进行整式的简便运算

  四、学习设计

  (一)预习准备

  (1)预习书p26-27

  (2)思考:如何更简单迅捷地进行各种乘法公式的运算?[

  (3)预习作业:1.利用完全平方公式计算

  (1)(2) (3)(4)

  2.计算:

  (1) (2)

  (二)学习过程

  平方差公式和完全平方公式的逆运用

  由 反之

  反之

  1、填空:

  (1)(2)(3)

  (4)(5)

  (6)

  (7)若,则k=

  (8)若是完全平方式,则k=

  例1计算:1. 2.

  现在我们从几何角度去解释完全平方公式:

  从图(1)中可以看出大正方形的边长是a+b,

  它是由两个小正方形和两个矩形组成,所以

  大正方形的面积等于这四个图形的面积之和.

  则S= =

  即:

  如图(2)中,大正方形的边长是a,它的面积是 ;矩形DCGE与矩形BCHF是全等图形,长都是 ,宽都是 ,所以它们的面积都是 ;正方形HCGM的边长是b,其面积就是 ;正方形AFME的边长是 ,所以它的面积是 .从图中可以看出正方形AEMF的面积等于正方形ABCD的’面积减去两个矩形DCGE和BCHF的面积再加上正方形HCGM的面积.也就是:(a-b)2= .这也正好符合完全平方公式.

  例2.计算:

  (1) (2)

  变式训练:

  (1) (2)

  (3) (4)(x+5)2–(x-2)(x-3)

  (5)(x-2)(x+2)-(x+1)(x-3) (6)(2x-y)2-4(x-y)(x+2y)

  拓展:1、(1)已知,则=

  (2)已知,求________,________

  (3)不论为任意有理数,的值总是()

  A.负数B.零C.正数D.不小于2

  2、(1)已知,求和的值。

  (2)已知,求的值。

  (3).已知,求的值

  回顾小结

  1.完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号。

  2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择。

以上就是小编为大家准备的完全平方公式教学设计通用,希望能帮助到大家,更多精彩资讯请关注本站信息推送。

本内容由zhenzhen收集整理,不代表本站观点,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:https://wenku.puchedu.cn/16472.html

(0)
zhenzhenzhenzhen

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注