“小升初数学知识点总结”的意思是:对从小学毕业升入初中所需掌握的数学知识进行归纳总结。以下是有关于小升初数学知识点总结的有关内容,欢迎大家阅读!

小升初数学知识点总结1
什么叫做单项式和多项式?
不含加、减运算的整式,叫做单项式。特殊的,单独一个数或一个字母
多项式。例如:4x+7,3×2+5,6×2+7x+2等都是多项式。
约数倍数:
(1)最大公约最小公倍数(2)约数个数决定法则(常考内容)
质数合数:
(1)质数、合数的概念和判断(2)分解质因数(重点)
余数问题:
(1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的.应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)
整除问题:
(1)数的整除的特征和性质(新初一分班常考内容)
(2)位值原理的应用(用字母和数字混合表示多位数)
这四个问题我们需要掌握到什么样的程度?
从近几年的来看,虽然一些重点中学对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张新初一分班试卷的完成应该是能取得很好的成绩的。对此,酷学网给出学生建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。
小升初数学知识点总结2
1.整数的意义
自然数和0都是整数。
2.自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3.计数单位:
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4.数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5.数的整除
整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
一个数的约数的个数是有限的,其中最小的`约数是1,最大的约数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
个位上是0、2、4、6、8的数,都能被2整除。
个位上是0或5的数,都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。
小升初数学知识点总结3
1分数加减法应用题:
分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2分数乘法应用题:
是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位1的量和分率,求与分率所对应的实际数量。
解题关键:准确判断单位1的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
3分数除法应用题:
求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。一个数是比较量,另一个数是标准量。求分率或百分率,也就是求他们的倍数关系。
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了单位一,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。
已知一个数的几分之几(或百分之几),求这个数。
特征:已知一个实际数量和它相对应的分率,求单位1的量。
解题关键:准确判断单位1的量把单位1的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际
数量。
4出勤率
发芽率=发芽种子数/试验种子数100%
小麦的出粉率=面粉的重量/小麦的重量100%
产品的合格率=合格的产品数/产品总数100%
职工的出勤率=实际出勤人数/应出勤人数100%
5工程问题:
是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
解题关键:把工作总量看作单位1,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。
数量关系式:
工作总量=工作效率工作时间
工作效率=工作总量工作时间
工作时间=工作总量工作效率
工作总量工作效率和=合作时间
6纳税
纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
缴纳的税款叫应纳税款。
应纳税额与各种收入的(销售额、营业额、应纳税所得额)的比率叫做税率。
*利息
存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金利率时间
—
第二章度量衡
一长度
(一)什么是长度
长度是一维空间的度量。
(二)长度常用单位
*公里(km)*米(m)*分米(dm)*厘米(cm)*毫米(mm)*微米(um)
(三)单位之间的换算
*1毫米=1000微米*1厘米=10毫米*1分米=10厘米*1米=1000毫米*1千米=1000米
二面积
(一)什么是面积
面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。
(二)常用的面积单位
*平方毫米*平方厘米*平方分米*平方米*平方千米
(三)面积单位的换算
*1平方厘米=100平方毫米*1平方分米=100平方厘米*1平方米=100平方分米
*1公倾=10000平方米*1平方公里=100公顷
三体积和容积
(一)什么是体积、容积
体积,就是物体所占空间的大小。
容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
(二)常用单位
1体积单位
*立方米*立方分米*立方厘米
2容积单位*升*毫升
(三)单位换算
1体积单位
*1立方米=1000立方分米
*1立方分米=1000立方厘米
2容积单位
*1升=1000毫升
*1升=1立方米
*1毫升=1立方厘米
四质量
(一)什么是质量
质量,就是表示表示物体有多重。
(二)常用单位
*吨t*千克kg*克g
(三)常用换算
*一吨=1000千克
*1千克=1000克
五时间
(一)什么是时间
是指有起点和终点的一段时间
(二)常用单位
世纪、年、月、日、时、分、秒
(三)单位换算
*1世纪=100年
*1年=365天平年
*一年=366天闰年
*一、三、五、七、八、十、十二是大月大月有31天
*四、六、九、十一是小月小月小月有30天
*平年2月有28天闰年2月有29天
*1天=24小时
*1小时=60分
*一分=60秒
六货币
(一)什么是货币
货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。
(二)常用单位
*元*角*分
(三)单位换算
*1元=10角
*1角=10分
–
第三章代数初步知识
一、用字母表示数
1用字母表示数的意义和作用
*用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式
(1)常见的数量关系
路程用s表示,速度v用表示,时间用t表示,三者之间的关系:
s=vt
v=s/t
t=s/v
总价用a表示,单价用b表示,数量用c表示,三者之间的关系:
a=bc
b=a/c
c=a/b
(2)运算定律和性质
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
减法的性质:a-(b+c)=a-b-c
(3)用字母表示几何形体的公式
长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。
c=2(a+b)
s=ab
正方形的边长a用表示,周长用c表示,面积用s表示。
c=4a
s=a
平行四边形的底a用表示,高用h表示,面积用s表示。
s=ah
三角形的底用a表示,高用h表示,面积用s表示。
s=ah/2
梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。
s=(a+b)h/2
s=mh
圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。
c=d=2r
s=r
扇形的半径用r表示,n表示圆心角的度数,面积用s表示。
s=nr/360
长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。
v=sh
s=2(ab+ah+bh)
v=abh
正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.
s=6a
v=a
圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.
s侧=ch
s表=s侧+2s底
v=sh
圆锥的高用h表示,底面积用s表示,体积用v表示.
v=sh/3
3用字母表示数的写法
数字和字母、字母和字母相乘时,乘号可以记作.,或者省略不写,数字要写在字母的前面。
当1与任何字母相乘时,1省略不写。
在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。
用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。
4将数值代入式子求值
*把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。
*同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。
二、简易方程
(一)方程和方程的解
1方程:含有未知数的等式叫做方程。
注意方程是等式,又含有未知数,两者缺一不可。
方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。
2方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
三、解方程
解方程,求方程的解的过程叫做解方程。
四、列方程解应用题
1列方程解应用题的意义
*用方程式去解答应用题求得应用题的未知量的方法。
2列方程解答应用题的步骤
*弄清题意,确定未知数并用x表示;
*找出题中的数量之间的相等关系;
*列方程,解方程;
*检查或验算,写出答案。
3列方程解应用题的方法
*综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
*分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4列方程解应用题的范围
小学范围内常用方程解的应用题:
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算;
d分数、百分数应用题;
e比和比例应用题。
五比和比例
1比的意义和性质
(1)比的意义
两个数相除又叫做两个数的比。
:是比号,读作比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
(2)比的性质
比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3)求比值和化简比
求比值的方法:用比的前项除以后项,它的`结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。
(4)比例尺
图上距离:实际距离=比例尺
要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
(5)按比例分配
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
2比例的意义和性质
(1)比例的意义
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质
在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。
(3)解比例
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。
3正比例和反比例
(1)成正比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)
(2)成反比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示xy=k(一定)
小升初数学知识点总结4
体积和表面积
三角形的面积=底高2。公式S=ah2
正方形的面积=边长边长公式S=a2
长方形的面积=长宽公式S=ab
平行四边形的面积=底高公式S=ah
梯形的面积=(上底+下底)高2公式S=(a+b)h2
内角和:三角形的内角和=180度。
长方体的表面积=(长宽+长高+宽高)2公式:S=(ab+ac+bc)2
正方体的表面积=棱长棱长6公式:S=6a2
长方体的体积=长宽高公式:V=abh
长方体(或正方体)的体积=底面积高公式:V=abh
正方体的体积=棱长棱长棱长公式:V=a3
圆的周长=直径公式:L=r
圆的面积=半径半径公式:S=r2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=rh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2r2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面积高。公式:V=1/3Sh
算术
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a+b=b+a
3、乘法交换律:ab=ba
4、乘法结合律:abc=a(bc)
5、乘法分配律:ab+ac=ab+c
6、除法的性质:abc=a(bc)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法:被除数=商除数+余数
方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的.数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。
代数:代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x=ab+c
分数
分数:把单位1平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
数量关系计算公式
单价数量=总价单产量数量=总产量
速度时间=路程工效时间=工作总量
加数+加数=和一个加数=和+另一个加数
被减数-减数=差减数=被减数-差被减数=减数+差
因数因数=积一个因数=积另一个因数
被除数除数=商除数=被除数商被除数=商除数
长度单位:
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
面积单位:
1平方千米=100公顷1公顷=10000平方米
1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
1亩=666.666平方米。
体积单位
1立方米=1000立方分米1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升1毫升=1立方厘米
重量单位
1吨=1000千克1千克=1000克=1公斤=1市斤
比
什么叫比:两个数相除就叫做两个数的比。如:25或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:xy=k(k一定)或k/x=y
百分数
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的化发。
倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数:公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。
用6去除大于3的质数,结果一定是1或5。
奇数与偶数
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
偶数偶数=偶数奇数奇数=奇数奇数偶数=奇数
偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数偶数=偶数奇数奇数=奇数奇数偶数=偶数
相临两个自然数之和为奇数,相临自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
奇数偶数
整除
如果c|a,c|b,那么c|(ab)
如果,那么b|a,c|a
如果b|a,c|a,且(b,c)=1,那么bc|a
如果c|b,b|a,那么c|a
小数
自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
纯小数:个位是0的小数。
带小数:各位大于0的小数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3.141414
不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3.141592654
无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3.141414
无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3.141592654
利润
利息=本金利率时间(时间一般以年或月为单位,应与利率的单位相对应)
利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率
小升初数学知识点总结5
一、数的改写
一个较大的多位数,为了读写方便,常常把它改写成用万或亿作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。
2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。
3、四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。
二、大小比较
1、比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2、比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的.数也相同的,百分位上的数大的那个数就大
3、比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。
小升初数学知识点总结6
(一)小数
1、小数的意义
把整数1平均分成10份、100份、1000份得到的十分之几、百分之几、千分之几可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位十分之一和整数部分的最低单位一之间的进率也是10。
2、小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.333.1415926
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.5550.033312.109109
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99的循环节是9,0.5454的循环节是54。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.1110.5656
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。3.12220.03333
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777简写作0.5302302简写作。
(二)分数
1、分数的意义
把单位1平均分成若干份,表示这样的一份或者几份的.数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位1平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位1平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3、约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(三)百分数
表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用%来表示。百分号是表示百分数的符号。
以上就是小编为大家整理的小升初数学知识点:小数、百分数、分数。
小升初数学知识点总结7
第一单元小数乘法
1、小数乘整数的意义:小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2、小数乘法的计算法则:计算小数乘法先按整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边数出几位,点上小数点。
3、在运算中,乘得的积要点小数点时,如果乘得的积的小数位数不够时,要在前面用0补足。积点上小数点后,末尾有0应当划去。
4、一个数乘小数的意义:一个数乘小数的意义就是求这个数的十分之几,百分之几,千分之几……是多少。
5、取近似值的方法:保留整数精确到个位保留一位小数→精确到十分位保留两位小数→精确到百分位,保留三位小数→精确到千分位……
6、整数乘法的交换律结合律和分配律对于小数乘法也适用。一个数乘以大于1的数,积比原来的.数大。一个数乘以小于1的数,积比原来的数小。
7、积的变化规律
⑴一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数”的规律。
第二单元小数除法
1、小数除法的意义与整数除法的意义相同,就是已知两个因数的乘积和其中一个因数,求另一个因数的运算。
2、除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
3、除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
4、
⑴在除法中,被除数和除数同时扩大或缩小相同的倍数,商不变。
⑵被除数不变,除数除以(或乘以)一个数,所得的商反而要乘以(或除以)相同的数
⑶除数不变,被除数扩大几倍,商也要扩大相同的倍数;被除数缩小几倍,商也要缩小相同的倍数。
5一个数除以大于1的数,商比原来的数小。一个数除以小于1的数,商比原来的数大。
5、循环小数两数相除,如果得不到整数商,会有两种情况:一种,得到有限小数。一种,得到无限小数。小数部分的位数是有限的小数叫做有限小数。小数部分的位数是无限的小数叫做无限小数。从小数点后某一位开始不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,如2.1666…,35.232323…等,被重复的一个或一节数字称为循环节。循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点。例如:
2.166666…缩写为2.16(读作“二点一六,六循环”)
0.34103103…103…缩写为0.34103(读作“零点三四一零三,一零三循环”)
6、求商的近似值
小数除法经常会出现除不尽的情况,或者商的小数位数较多的情况。但是在实际工作和生活中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。
方法:
⑴先除到比需要保留的的小数位数多一位,如果得数保留一位小数,除到小数点后面第二位即可;如果得数保留两位小数,除到小数点后面第三位即可……
⑵在按照“四舍五入”法去掉末一位。但在解决实际问题时,我们要根据实际情况取商的近似值,有时是“进一法”,有时是“取尾法”。
本内容由xiaojie收集整理,不代表本站观点,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:https://wenku.puchedu.cn/258617.html