集合是数学中的基本概念之一,但如何让学生理解和掌握集合的概念却是一个挑战。如何设计一个有效的集合概念教学方案,让学生在学习过程中更好地理解和应用集合概念?本文将就“集合的概念教学设计”此主题进行探讨。
![集合的概念教学设计 《集合的概念》教案设计](https://wimg.puchedu.cn/uploads/2023/08/20230816075210540.png)
集合的概念教学设计1
一、教材
1、教材的地位和作用
《集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。
2、教学目标
(1)知识目标:a、通过实例了解集合的含义,理解集合以及有关概念;
b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。
(2)能力目标:a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;
b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。
(3)情感目标:a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;
b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
3、重点和难点
重点:集合的概念,元素与集合的关系。
难点:准确理解集合的概念。
二、学情分析(说学情)
对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。
三、教法
针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。
四、学习指导(说学法)
教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。
五、教学过程
1、引入新课:
a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。
b、介绍集合论的创始者康托尔
2、究竟什么是集合?(实例探究)切合学生现有的认知水平,以学生熟悉的事物(物体),以实际生活为背景进行探究,为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。
3、集合的’概念,本课的重点。结合探究中的实例,让学生说出集合和元素各是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。
教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。
4、熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。
5、集合的符号记法,为本节重点做好铺垫。
6、从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:⑴集合元素的确定。⑵理解两符号的含义。
7、思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。
8、从所举的例子中抽象出数集的概念,并给出常见数集的记法。
9、学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。
10、知识的实际应用:
问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。
11、课堂小节
以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。
六、评价
教学评价的及时能有效调动课堂气氛,感染学生的情绪,对课堂教学发挥着积极作用,教学过程遵重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。
七、教学反思
1、通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。
2、启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。
八、板书设计
集合的概念教学设计2
一、问题情境
1.在初中,我们学过哪些集合?
2.在初中,我们用集合描述过什么?
学生讨论得出:在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.
3.“集合”一词与我们日常生活中的哪些词语的意义相近?学生讨论得出:
“全体”、“一类”、“一群”、“所有”、“整体”,……
二、建立模型
1.集合的概念(先具体举例,然后进行描述性定义)
(1)某种指定的对象集在一起就成为一个集合,简称集.
(2)集合中的每个对象叫作这个集合的元素.
(3)集合中的元素与集合的关系:
a是集合A中的元素,称a属于集合A,记作a∈A;
a不是集合A中的元素,称a不属于集合A,记作a
例:设B={1,2,3},则1∈B,4
2.集合中的元素具备的性质
(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.
(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的.
例:若集合A={a,b},则a与b是不同的两个元素.
(3)无序性:集合中的元素无顺序.例:集合{1,2}与集合{2,1}表示同一集合.
3.常用的数集及其记法
全体非负整数的集合简称非负整数集(或自然数集),记作N.
非负整数集内排除0的集合简称正整数集,记作N*或N+;
全体整数的集合简称整数集,记作Z;全体有理数的集合简称有理数集,记作Q;
全体实数的集合简称实数集,记作R.
4.集合的表示方法
如何表示方程x2-3x+2=0的所有解?
(1)列举法
例:x2-3x+2=0的解集可表示为{1,2}.
(2)描述法
例:①x2-3x+2=0的解集可表示为{x|x2-3x+2=0}.
②不等式x-3>2的解集可表示为{x|x-3>2}.
③Venn图法
5.集合的分类
(1)有限集:含有有限个元素的集合.例如,A={1,2}.
(2)无限集:含有无限个元素的集合.例如,N.
(3)空集:不含任何元素的集合,记作
注:对于无限集,不宜采用列举法.
三、解释应用
1.用适当的方法表示下列集合。例如,{x|x2+1=0,x∈R}=.B.A.
(1)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数.
(2)平面内到一个定点O的距离等于定长l(l>0)的所有点P.
2.用不同的方法表示下列集合.
(1){2,4,6,8}.
(2){x|x2+x-1=0}.
(3){x∈N|3<x<7}.
3.已知A={x∈N|66-x∈N}.试用列举法表示集合A.
(A={0,3,5})
4.用描述法表示在平面直角坐标中第一象限内的点的坐标的集合.
[练习]
1.用适当的方法表示下列集合.
(1)构成英语单词mathematics(数字)的全体字母.
(2)在自然集内,小于1000的奇数构成的集合.
四、拓展延伸
把下列集合“翻译”成数学文字语言来叙述.
(1){(x,y)|y=x2+1,x∈R}.
(2){y|y=x2+1,x∈R}.
(3){(x,y)|y=x2+1,x∈R}.
(4){x|y=x2+1,y∈N*}.
这篇案例注重新、旧知识的联系与过渡,以旧引新,从学生的原有知识、经验出发,创设问题情境;从实例引出集合的概念,再结合实例让学生进一步理解集合的概念,掌握集合的表示方法.非常注重实例的使用是这篇案例的突出特点.这样做,通俗易懂,使学生便于学习和掌握.例题、练习由浅入深,对培养学生的理解能力、表达能力、思维能力大有裨益.拓展延伸注重数学语言的转化和训练,注重区分形似而质异的数学问题,加强了学生对数学概念的理解和认识.
我在本节课的教学中做这样的调整,主要是考虑到自己所带学生的接受能力与本节课的要求,无论是知识层次呈现顺序的调整,还是议一议中学生熟悉的函数的给出,目的都是让学生感觉到本节课与初中所学知识的连贯性,从而很好地达到本节课的教学目标。
集合的概念教学设计3
教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法。
教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:
一、集合的概念实例
引入:⑴1~20以内的所有质数;⑵我国从1991~XX的XX年内所发射的所有人造卫星;⑶金星汽车厂XX年生产的所有汽车;⑷XX年1月1日之前与我国建立外交关系的所有国家;⑸所有的正方形;⑹黄图盛中学XX年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集。
二、集合元素的特征
(1)确定性:设a是一个给定的集合,x是某一个具体对象,则或者是a的`元素,或者不是a的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.
(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写
练习:判断下列各组对象能否构成一个集合⑴2,3,4⑵(2,3),(3,4)⑶三角形⑷2,4,6,8,…⑸1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解。
三、集合相等
构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合a的元素,就说a属于a,记作a∈a(2)如果a不是集合a的元素,就说a不属于a,记作a∈a五、常用数集及其记法非负整数集(或自然数集),记作n;除0的非负整数集,也称正整数集,记作n*或n+;整数集,记作z;有理数集,记作q;实数集,记作r。
练习:
(1)已知集合m={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()
a直角三角形b锐角三角形c钝角三角形d等腰三角形
(2)说出集合{1,2}与集合{x=1,y=2}的异同点?
六、集合的表示方式
(1)列举法:把集合中的元素一一列举出来,写在大括号内;
(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)
例1、用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成。
例2、试分别用列举法和描述法表示下列集合:
(1)由大于10小于20的的所有整数组成的集合;
(2)方程x2-2=2的所有实数根组成的集合.注意:(1)描述法表示集合应注意集合的代表元素(2)只要不引起误解集合的代表元素也可省略。
七、小结集合的概念、表示;集合元素与集合间的关系;常用数集的记法。
八、作业
集合的概念教学设计4
一、教学目标
1.使学生学会借助直观图,利用集合的思想方法解决简单的实际问题。
2.通过活动,使学生掌握解决重合问题的一些基本策略,体验解决问题策略的多样性。
3.丰富学生对直观图的认识,发展形象思维。
二、教学重点
初步学会利用交集的含义解决简单的实际问题。
三、教学难点
用图示的方法感受到交集部分。
四、教具准备
多媒体课件。
五、教学过程
(一)生活导入
1.看电影:两位妈妈和两位女儿一同去看电影,可是她们只买了3张票,便顺利地进了电影院,这是为什么?(外婆、妈妈、女儿)
2.小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第3,你猜这队小朋友一共有几人?
教师引导学生:你能用你喜欢的方法解释一下吗?(让学生用画图来表示解释)
【生板书画画:○○●○○】
同学聪明活泼、思维活跃,非常喜欢发言,老师很高兴能和你们成为朋友,今天我们就一起上一堂数学活动课—-数学广角。
(二)温故知新
1.森林运动会要开始了,我们来看看小动物们组队参加篮球赛和足球赛的情况。
出示“报名表”:
(1)仔细观察这个表格,你们能发现哪些数学信息?同桌互相说说。
参加篮球赛的有几种动物?参加足球赛的呢?
(2)根据这些数学信息,可以提出什么问题?
学生提问:参加篮球赛和参加足球赛的一共有几种动物?
(3)谁能解决这个问题:17人、16人、15人、14人。
2.现在有几种不同的答案,那么到底参加篮球赛和参加足球赛的一共有几种动物?
为了解决这个问题,我们组织一个画图大赛,先画出你喜欢的图案,将表格中参加篮球赛、足球赛的动物写在画好的图案里。注意:怎样写才能使大家在你设计的图中一眼就能看出哪些是参加篮球赛、哪些是足球赛的,哪些是既参加篮球赛又足球赛的呢?看看哪个小组设计的图既简单又科学。
(1)小组合作,设计出多种图案。
(2)学生上台展示设计作品,其余同学当小评委。
(3)把展示的作品放在一起,你最喜欢哪一种,为什么?
3.老师也设计了一幅图案,你们也帮老师评一评好吗?【课件】
(1)课件出示:篮球赛足球赛
(2)对老师的设计有什么看法吗?
(3)老师根据你们的建议进行了修改,课件演示两集合相交的过程。
4.观察图,看图抢答:图中告诉你什么信息?【课件】
(1)参加篮球赛的有8种。
(2)参加足球赛的有9种。
(3)3种动物是既参加篮球赛又参加足球赛的。
(4)只参加篮球赛的有5种。
(5)只参加足球赛的有6种。
(6)参加篮球赛的和参加足球赛的有14种。列式表示:8+9-3=14(种)
①追问:为什么减去3?
(因为这3种既参加篮球赛又参加足球赛,是重复的,因此要去掉。)
②还可以怎样解答?说说是怎样想的?
5+3+6=14(种)
(只参加篮球赛的5人和只参加足球赛的6人与既参加篮球赛又参加足球赛的3人,解决的是问题。)
9-3+8=14(种)
(9-3表示只参加足球赛,再加上参加篮球赛的8人,也可以得到问题。)
教师介绍:这个图是一个叫韦恩的人创造的。
5.集合图与表格比较,有什么好处?
从图中能很清楚地看出重复的部分和其它信息。
(三)巩固练习
1.同学们都很爱动脑筋,自己设计了解决问题的方法,运用这些数学思想方法可以解决生活中的许多实际问题。
(1)春天到了,阳光明媚,动物王国准备举行运动会,看哪些动物来参加呢?认识它们吗?
(2)学生说说动物名称。
课件出示比赛项目:游泳、飞行。
(3)小动物们可以参加什么项目呢?学生讨论、反馈。
(4)原来这些动物有这么多本领,那就请你们来帮小动物报名吧。(把动物序号填在课本上)
(5)汇报:说说哪些动物会飞,能参加飞翔比赛,哪些动物会游泳,能参加游泳比赛。学生边说边动画演示。
点到天鹅、海鸥时,说说它们应参加什么项目,为什么?要放在哪儿?这说明两个圆圈交叉的中间部分表示什么?
动画演示:既会飞又会游泳的。
2.动画6【P110——2】文具店。
同学们帮助小动物们解决了运动会报名的问题,再接受一次挑战好吗?
(1)课件出示:文具店。
课件演示:文具店昨天、今天批发文具的情况。
(2)观察图,发现了什么?(两天都批发了钢笔、尺、练习本)
昨天进的’货有:(略),今天进的货有(略)
(3)两天共批发多少种货?
学生列式:5+5-3=75×2-3=75-3+5=7
(4)结合动画验证算式。
3.同学们去春游,带面包的有26人,带水果的有23人,既带面包又带水果的有48人。参加春游的同学一共有多少人?
(2)根据线段图学生列式:
26-10+2323-10+2626+23-10
(3)说说怎样想的?
4.动画11(集合图)
(1)看图说图意
(2)根据动画提供的素材学生列式
小结:我们在解决问题时,很好的利用了集合圈或者线段图帮助我们分析问题。
(四)归纳总结
通过这节课的学习,你有什么收获?
(五)机动练习
三年级有20个同学参加竞赛,其中参加数学竞赛的有15人,参加作文竞赛的有13人。
(1)既参加数学竞赛又参加作文竞赛的有几人?
(2)只参加数学竞赛的有几人?
(3)只参加作文竞赛的有几人?
集合的概念教学设计5
学生进入高中,学习数学的第一课,就是集合。集合不仅与高中数学的许多内容有着紧密的联系,而且已经渗透到自然科学的众多领域,应用十分广泛。掌握好集合的知识既是数学学习本身的需要,也是全面提高数学素养的一个必不可少的内容。而由于集合单元的概念抽象,符号术语多,研究方法跟学习初中数学时有着明显的差异,致使部分同学初学集合时,感到难以适应,常常因为这样那样的原因造成解题失误,形成思维障碍,甚至影响整个高中数学的学习。为了帮助同学们解决这一问题,在集合教学中值得注意的几个事项
一、准确地把握集合的`概念,熟练地运用集合与集合的关系解决具体问题
概念抽象、符号术语多是集合单元的一个显着特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。这些概念、关系和表示方法,都可以作为求解集合问题的依据、出发点甚至是突破口。因此,要想学生学好集合的内容,就必须在准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题上下功夫。
二、注意弄清集合元素的性质,学会运用元素分析法审视集合的有关问题
众所周知,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素。集合中的元素具有“三性”:
(1)确定性:集合中的元素应该是确定的,不能模棱两可;
(2)互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个;
(3)无序性:集合中的元素是无次序关系的。
集合的关系、集合的运算等等都是从元素的角度予以定义的。因此,求解集合问题时,抓住元素的特征进行分析,就相当于牵牛抓住了牛鼻子。
三、体会集合问题中蕴含的数学思想方法,掌握解决集合问题的基本规律
布鲁纳说过,掌握数学思想可使得数学更容易理解和记忆,领会数学思想是通向迁移大道的“光明之路”。集合单元中,含有丰富的数学思想内容,例如数形结合的思想、分类讨论的思想、等价转化的思想、正难则反的思想等等,显得十分活跃。在学习过程中,注意对这些数学思想进行挖掘、提炼和渗透,不仅可以有效地掌握集合的知识,驾驭集合问题的求解,而且对于开发智力、培养能力、优化思维品质,都具有十分重要的意义。
四、重视空集的特殊性,防止由于忽视空集这一特殊情况导致的解题失误
空集是一个十分重要的特殊集合,它具备“空集虽空,但空有所为”的功能。在解题的过程中,要时刻注意有无可能存在空集的情况,否则极易导致解题失误。这一点,必须引起我们的高度重视。
集合的概念教学设计6
教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课
教学目标:
(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
教学重点:集合的基本概念与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样
5.元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a A(或a A)(举例)
6.常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N*或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1)列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
例1.(课本例1)
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;
例2.(课本例2)
说明:(课本P5最后一段)
思考3:(课本P6思考)
强调:描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(三)课堂练习(课本P6练习)
三、归纳小结
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。
四、作业布置
书面作业:习题1.1,第1-4题
五、板书设计(略
集合的概念教学设计7
1.1集合-集合的概念
教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解属于关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
1.集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的`集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的一般地,某些指定的对象集在一起就成为一个集合,也简称集 这句话,只是对集合概念的描述性说明
教学过程:
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人康托尔(德国数学家)(见附录);
4.物以类聚,人以群分
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作N,
(2)正整数集:非负整数集内排除0的集 记作N*或N+
(3)整数集:全体整数的集合 记作Z ,
(4)有理数集:全体有理数的集合 记作Q ,
(5)实数集:全体实数的集合 记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作aA
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q
元素通常用小写的拉丁字母表示,如a、b、c、p、q
⑵的开口方向,不能把aA颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数 (不确定)
(2)好心的人 (不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|, 所组成的集合,最多含( A )
(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素
5、设集合G中的元素是所有形如a+b (aZ, bZ)的数,求证:
(1) 当xN时, x
(2) 若xG,yG,则x+yG,而 不一定属于集合G
证明(1):在a+b (aZ, bZ)中,令a=xN,b=0,
则x= x+0* = a+b G,即xG
证明(2):∵xG,yG,
x= a+b (aZ, bZ),y= c+d (cZ, dZ)
x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵aZ, bZ,cZ, dZ
(a+c) Z, (b+d) Z
x+y =(a+c)+(b+d) G,
又∵ =
且 不一定都是整数,
= 不一定属于集合G
四、小结:本节课学习了以下内容:
1.集合的有关概念:(集合、元素、属于、不属于)
2.集合元素的性质:确定性,互异性,无序性
3.常用数集的定义及记法
五、课后作业:
六、板书设计(略)
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。希望上面的高一数学教学设计,能受到大家的欢迎!
集合的概念教学设计8
教学目标:
1.让学生经历韦恩图的产生过程,能借助直观图,利用集合的思想方法解决简单的实际问题。
2.培养学生善于观察、善于思考的学习习惯。使学生感受到数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题,体验解决问题策略的多样性。
教学重点:让学生感知集合的思想,并利用集合的思想方法解决简单的实际问题。
教学难点:学生对重叠部分的理解。
教学准备:多媒体课件、姓名卡片等。
教学过程:
(一)创设情境,引出新知
1.出示信息。
出示教科书例1,只出示统计表,不出示问题。让学生说一说从中获得了哪些信息。
2.提出问题,激发“冲突”
让学生自由提出想要解决的问题,重点关注“参加这两项比赛的共有多少人”这个问题,让学生解答。关注不同的答案,抓住“冲突”,激发学生探究的欲望。
(二)自主探究,学习新知
1.独立思考表达方式,经历知识形成过程。
师:大家对这个问题产生了不同的意见。你能不能借助图、表或其他方式,让其他人清楚地看出结果呢?
学生独立思考,并尝试解决。
2.汇报交流,初步感知集合概念。
(1)小组交流,互相介绍自己的作品。
(2)选择有代表性的方案全班交流。
请每幅作品的创作者上台介绍自己的思考过程,注意追问“如何表示出两项比赛都参加的学生”,体会两个集合中的公共元素构成的交集。
预设1:把参加两项比赛的学生姓名分别列出,把相同的名字连起,就找到两项比赛都参加的学生了,有3人。这样参加跳绳比赛的9人,加上参加踢毽比赛的8人,再去掉3个重复的,应该是14人。
预设2:先写出所有参加跳绳比赛同学的姓名,再写参加踢毽比赛的。如果与前面的相同就不重复写了,连线就能表示了。一共写出了14个不同的姓名,说明参加比赛的有14人。从姓名上如果引出两条线,就说明他两项比赛都参加了。
预设3:把参加两项比赛学生的姓名分别放到两个长方形里,再把两项比赛都参加的学生的名字移到一边,两个长方形里都有这三个名字,把这两个长方形的这部分重叠起来,名字只出一次就可以了。可以看出只参加跳绳比赛的有6人,两项比赛都参加的有3人,只参加踢毽比赛的有5人,一共有14人。
3.对比分析,介绍韦恩图。
(1)对比、分析,提示课题。
师:同学们解决问题的能力真强,而且画出了这么多不同的图示表示。上面的三幅图中,你更喜欢哪一幅?为什么?
预设1:喜欢第三幅,去掉了重复的学生的姓名,更清楚,很容易看出参加这两项比赛的学生情况。
预设2:喜欢第三幅,用两个长方形的重叠部分表示两项比赛都参加的学生,很直观。
师:在数学上,我们把参加跳绳比赛的学生看作一个整体,叫做一个集合;把参加踢毽比赛的学生看作一个整体,也是一个集合。今天我们就研究集合。(板书课题:集合。)
(2)介绍用韦恩图表示集合。
师:第三幅图先把参加跳绳的和踢毽的学生的姓名分别放在了长方形里,很直观。回忆一下,在认识百以内数的时候,按要求写数时,就把提供的数和按要求写出的数都用类似长方形的圈圈了起,每个圈都分别表示一个集合。
师:在数学上我们常用这样的方法,直观地把集合中的具体事物表示出来。(多媒体课件出示左下图,或在黑板上将姓名卡片圈起。)
师:这个图表示什么?
预设:参加跳绳比赛的学生的集合。
出示右上图,随学生回答将参加踢毽比赛的学生姓名填入圈中。
在填入姓名时,引导学生发现,每个圈中的姓名不能重复、不能遗漏,体会集合元素的互异性;每个圈中姓名的摆放次序可以多样,体会集合元素的无序性。
(3)介绍用韦恩图表示集合的运算。
提问:利用这两个图怎样才能让他人直观地看出“参加这两项比赛的人员情况”呢?
通过多媒体课件,动态展示将左右两个图部分重叠的过程,或操作姓名卡片,去掉重复的姓名卡片,帮助学生理解姓名出现两次的学生是这两个集合的公共元素,可以用两个图的重叠部分表示它们的交集。
提问:中间重叠的部分表示的是什么?
预设:两项比赛都参加的学生;既参加跳绳比赛又参加踢毽比赛的学生。
提问:整个图表示的是什么?
预设:参加这两项比赛的学生;参加跳绳比赛或参加踢毽比赛的学生。
4.列式解答,加深对集合运算的认识。
(1)尝试独立解决。
(2)汇报交流,体会解决问题的多种方法。
预设:9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。
让学生通过图示与算式结合进行表达,感悟多种集合知识。可以让学生在韦恩图上指一指它们求出的是哪一部分,体会并集;指一指算式中每一步表达的是哪一部分,如“8-3”和“9-3”,体会差集。
(3)比较辨析,体会基本方法。
通过对各种计算方法的比较,发现虽然具体列式方法不同,但都解决了问题,即求出了两个集合的并集的元素个数。重点让学生说一说9+8-3=14这一算式表达的含义,“参加跳绳比赛的人数加上参加踢毽比赛的人数再减去两项比赛都参加的人数”,体会“求两个集合的并集的元素个数,就是用两个集合的元素个数的和减去它们的交集的元素个数”这一基本方法。
(三)联系生活,巩固练习
1.完成“做一做”第1题。
先独立完成,再汇报交流。
可先分别出示两个集合圈,让学生填入相应的序号,再利用多媒体课件动态展示将两个集合并的过程。
2.完成“做一做”第2题。
学生先独立完成,再汇报交流。
提问1:你是用什么方法解答第(1)题的?要注意什么?
预设:圈出重复的姓名,再数出。要认真仔细找,不要漏掉。
提问2:第(2)题是求什么?你是用什么方法解答的?
预设:第(2)题求的是获得“语文之星”或“数学之星”的一共有多少人,只要获得了任何一个奖都要计算进去。先数出获得“语文之星”的集合的人数,再数出获得“数学之星”的集合的人数,相加后,再去掉既获得“语文之星”又获得“数学之星”的人数。如果学生理解题意有困难,可以借助韦恩图帮助学生理解。
(四)全课小结
师:今天我们学习了集合的知识,还会运用集合知识解决生活中的问题。说一说今天你有什么收获。
集合的概念教学设计9
一、章节名称:
1.1集合
二、计划学时:1(45分钟)
三、教学目标:
1、知识目标:
(1)使学生初步理解集合的概念、性质,知道常用数集的概念及其记法
(2)使学生初步了解“属于∈”关系的意义
(3)使学生初步了解集合的分类:有限集、无限集、空集
2、能力目标:
探究集合在现实社会中的意义的能力;使学生学会自觉探究数学学习方法的能力。
3、情感、态度与价值观目标
通过集合学习,使学生认识自己在社会这个大集合中的地位与作用,树立正确的三观。
四、教学重难点
1、教学重点:集合的基本概念、集合中元素的性质
2、教学难点:点集与数集的特点及常用的数集及其记法
五、学习者特征分析:
学习特点:学习对象为高一新生,高一学生虽然在智力等各方面都有
较之初中的发展,但毕竟刚刚由初中阶段上升而来,对于新的知识朦胧性较大,虽然集合的思想在小学以及初中就有了渗透,但是由于学生之间知识的差异层次较大,再者,一个概念的引入,如想较理性的认识还得靠深入的学习和多一些的训练。
学习习惯:高中级学生经过多年的学习,已经有了自己初级的学习习惯和方法,我们可以充分调动他们的积极性,并且适当帮助他们调整学习方法中的不妥之处。
六、课程类型与教学方法
课型:理论课与现实材料相结合的形式为主导,打破传统的数学课的枯燥乏味性。
教学方法:以教师授与学生互动为主采用实例归纳、自主探究、合作交流等方法.教学中通过列举例子,引导学生进行讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质.。
七、教学过程设计
(一)、课前安排
由于是初次试讲,老师与学生都是第一次见面。所以,课前准备要求老师把所有的问题都想清楚,努力做到课程流畅不卡壳。
(二)、课堂教学
集合的概念教学设计10
【教材分析】
重叠问题,学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的重叠问题有较简单的,也有一题多法的,还有课后让学生继续研究重叠问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;又由于重叠问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作学具中领会重叠问题的基本结构,并让他们借助实物图等帮助思考。
【学情分析】
学生从一开始学习数学,其实就已经在运用集合的思想方法了。如学习数数时,把2个三角形用一条封闭的曲线圈起来。而以后学习的平面图形之间的关系都要用到集合的思想。集合是比较系统、抽象的数学思想方法,针对三年级学生的认识水平,应让学生通过生活中容易理解的题材去初步体会集合思想,为后续学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
【教学目标】
1.通过观察、猜测、操作、交流等活动,让学生在自主探究活动中感知集合图形的过程,体会集合图的优点,能用集合图分析生活中简单的有重复部分的问题。
2.结合具体情境体会用“韦恩图”解决有重复部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重复部分的问题。
【教学重难点】
重点:理解集合图的各部分意义,能用集合图分析生活中简单的有重复部分的问题。
难点:借助直观图解决集合问题。
【教学准备】
课件。
【教学流程】
【情境导入】
1.看电影:两位妈妈和两位女儿一同去看电影,可她们只买了3张票,便顺利地进了电影院,这是为什么?
2.小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?
师:在生活中这种现象很多,我们经常会遇到,今天我们就一起走进数学广角,来研究一下这有趣的重复现象。(板书课题)
【探究新知】
1.巧妙设疑,直观感悟,初步感知重复现象。
(1)调查本班学生参加数学小组、作文小组的情况。
(2)游戏:参加数学小组、作文小组的学生分别站在两个呼啦圈里。
问题:当有同学既参加数学小组,又参加作文小组时怎么站?
引出问题,学生想办法解决。
(3)说说呼啦圈里各部分学生所表示的意思。
2.自主绘图,加深理解。
课件出示:
三(1)班参加数学、作文课外小组的学生情况表
数学
小明丁旭小小小强小兵小东张伟赵军
作文
小平刘红小东于丽小史陶伟小小卢强小光
(1)提问:参加数学课外小组的学生有几人?参加作文课外小组的学生有几人?参加数学、作文课外小组的学生共有多少人?(学生意见不统一,请学生说说理由)
师:能不能设计一幅图,把学生的姓名写在合适的位置,让我们能一眼就看出参加数学的、参加作文的和两个项目都参加的有哪些同学呢?
(2)学生小组合作,自主绘图。教师巡视指导。
3.学生汇报交流,逐步整理出简洁明了的直观图(韦恩图)。
师:你们知道吗?这个图是一个名叫韦恩的科学家创造的。你们刚才也像科学家一样,把这个图创造出来了,真了不起!
4.读图训练。教师引导学生用准确的语言表述图中的各种信息。
5.观察图表,算法探究。
师:你们能很快地算出参加数学、作文课外小组的一共有多少人吗?怎样列式?
学生回答列式。
6.比较图与表格,突出韦恩图的优点,肯定学生的科学创造过程。
【巩固应用】
教材第106页练习二十三第1、2、3题。
【课堂小结】
通过今天的学习,你有什么收获?
【板书设计】
既……又……
8+9-2=15(人)8-2+9=15(人)
9-2+8=15(人)6+7+2=15(人)
总之,集合概念是数学中非常重要的基础知识之一,因此在教学过程中需要使用多种方法和策略帮助学生全面理解集合的概念和应用。希望本文的集合的概念教学设计内容对大家有所帮助。
本内容由学无止jin收集整理,不代表本站观点,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:https://wenku.puchedu.cn/51122.html