任意角优质课教案 任意角的教学设计和反思

任意角教案是一种用于教学的课程计划或指南,旨在帮助教师有效地传授关于任意角的知识和技能给学生。任意角是指角度可以落在[0, 360°]或[0, 2π]范围内的任何角。它可以是正角、负角或零角。下面是小编整理的任意角优质课教案,仅供大家参考。

任意角优质课教案 任意角的教学设计和反思

任意角教案1

  教学目的:

  知识目标:

  1.理解三角函数定义。

  2.理解握各种三角函数在各象限内的符号。

  3.理解终边相同的角的同一三角函数值相等。

  能力目标:

  1.掌握三角函数定义。

  2.掌握各种三角函数在各象限内的符号。

  3.掌握终边相同的角的同一三角函数值相等。

  授课类型:

  复习课

  教学模式:

  讲练结合

  教具:

  多媒体、实物投影仪

  教学过程:

  一、复习引入:

  1、三角函数定义。

  2.确定下列各式的符号

  (1)sin100°cs240°

  (2)sin5+tan5

  3.x取什么值时,有意义?

  4.若三角形的两内角,满足sincs0,则此三角形必为……()

  A锐角三角形B钝角三角形C直角三角形D以上三种情况都可能

  5.若是第三象限角,则下列各式中不成立的是………………()

  A:sin+cs0B:tansin0

  C:csct0D:ctcsc0

  6.已知是第三象限角且,问是第几象限角?

  二、讲解新课:

  1、求下列函数的定义域:

  2、已知,则为第几象限角?

  3、(1)若θ在第四象限,试判断sin(csθ)cs(sinθ)的符号;

  (2)若tan(csθ)ct(sinθ)>0,试指出θ所在的象限,并用图形表示出的.取值范围。

  三、课后作业:

  1、利用单位圆中的三角函数线,确定下列各角的取值范围:

  (1)sinα<csα;

  (2)|sinα|<|csα|。

  2、角α的终边上的点P与A(a,b)关于x轴对称,角β的终边上的点Q与A关于直线=x对称。求sinαescβ+tanαctβ+secαcscβ的值。

任意角教案2

  一、知识与技能

  1.能从二倍角的正弦、余弦、正切公式导出半角公式,了解它们的内在联系;揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识. 并培养学生综合分析能力.

  2.掌握公式及其推导过程,会用公式进行化简、求值和证明。

  3.通过公式推导,掌握半角与倍角之间及半角公式与倍角公式之间的联系,培养逻辑推理能力。

  二、过程与方法

  1.让学生自己由倍角公式导出半角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;

  2.通过例题讲解,总结方法.通过做练习,巩固所学知识.

  三、情感、态度与价值观

  1.通过公式的推导,了解半角公式和倍角公式之间的内在联系,从而培养逻辑推理能力和辩证唯物主义观点。

  2.培养用联系的观点看问题的观点。

  【教学重点与难点】:

  重点:半角公式的推导与应用(求值、化简、证明)

  难点:半角公式与倍角公式之间的内在联系,以及运用公式时正负号的选取。

  【学法与教学用具】:

  1. 学法:

  (1)自主+探究性学习:让学生自己由和角公式导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。

  (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.

  2. 教学方法:观察、归纳、启发、探究相结合的教学方法。

  引导学生复习二倍角公式,按课本知识结构设置提问引导学生动手推导出半角公式,课堂上在老师引导下,以学生为主体,分析公式的结构特征,会根据公式特点得出公式的应用,用公式来进行化简证明和求值,老师为学生创设问题情景,鼓励学生积极探究。

  3. 教学用具:多媒体、实物投影仪.

  【授课类型】:新授课

  【课时安排】:1课时

  【教学思路】:

  一、创设情景,揭示课题

  二、研探新知

  四、巩固深化,反馈矫正

  五、归纳整理,整体认识

  1.巩固倍角公式,会推导半角公式、和差化积及积化和差公式。

  2.熟悉”倍角”与”二次”的关系(升角–降次,降角–升次).

  3.特别注意公式的三角表达形式,且要善于变形:

  4.半角公式左边是平方形式,只要知道角终边所在象限,就可以开平方;公式的”本质”是用?角的余弦表示角的正弦、余弦、正切.

  5.注意公式的结构,尤其是符号.

  六、承上启下,留下悬念

  七、板书设计(略)

  八、课后记:略

任意角教案3

  1 教材分析

  1.1 教材的地位与作用

  本节课教学内容“诱导公式(二)、(三)”是人教版《高中代数》上册第二章§2.6节内容.它既是学生已学习过的三角函数定义、诱导公式(一)等知识的延续和拓展,又是推导诱导公式(四)、(五)的理论依据.是本章“任意角的三角函数”一节及全章中起着承上启下作用的重要纽带.求三角函数值是三角函数中的重要内容.诱导公式是求三角函数值的基本方法.诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90”角的三角函数值问题,诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式.这对培养学生的创新意识、发展学生的思维能力、掌握数学的思想方法具有重大的意义

  1.2 教学重点与难点

  1.2.1 教学重点

  诱导公式的推导及应用

  1.2.2 教学难点

  相关角终边的几何对称关系及诱导公式结构特征的认识.

  2 目标分析

  根据教学大纲的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,本节课的教学目标如下

  2.1 知识目标

  1)识记诱导公式.

  2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.

  2.2 能力目标

  1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.

  2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.

  3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.

  2.3 情感目标

  1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.

  2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.

  3 过程分析

  3.1 创设问题情境,引导学生观察、联想,导入课题

  1)提问:三角函数定义、诱导公式(一)及其结构特征.

  2)板书:诱导公式(一).

  sin(k·360°+α)=sinα,cos(k·360°+α)=cosα.

  tan(k·360°+α)=tanα,cot(k·360°+α)=cotα(k∈Z)

  结构特征:①终边相同的角的同一三角函数值相等.

  ②把求任意角的三角函数值问题转化为求0°~360°角的三角函数值问题.

  教学设想 通过提问让学生温习、重视已有相关知识,为学生学习新知识作铺垫.

  3)学生练习:试求下列三角函数值

  sin1110°,sin1290°.

  教学设想 由已有知识导出新的问题,为学习新知识创设问题情境,以引起学生学习需要和学习兴趣,激发学生的求知欲,启迪学生思维的火花.

  4)介绍单位圆概念后,引导学生观察演示(一)并思考下列问题:

  ①210°能否用(180°+α)的形式表达(0°<α<90°)?(210°=180°+30°)

  ②210°与30°角的终边位置关系如何?(互为反向延长线或关于原点对称)

  ③设210°,30°角的终边分别交单位圆于点P,P’,则点P与P’的位置关系如何?(关于原点对称)

  ④设点P(x,y),则点P’的坐标怎样表示?[P'(-x,-y)]

  ⑤sin210°与sin30°的值的关系如何?

  教学设想 通过微机动态演示,引导学生发现210°与30°角的终边及其与单位圆交点关于原点对称关系,借助三角函数定义,寻找sin210°与sin30°值的关系,达到转化为求0°~90°角三角函数值的目的.

  学生通过主动探索、发现解决问题的途径,体验和领会数形结合与归纳转化的数学思想方法.

  5)导入课题

  对于任意角α,sinα与sin(180°+α)的关系如何呢?试说出你的猜想.

  3.2 运用迁移规律,引导学生联想、类比、归纳、推导公式

  1)引导学生观察演示(二)并思考下列问题:

  ①α与(180°+α)角的终边关系如何?(互为反向延长线或关于原点对称)

  ②设α与(180°+α)角的终边分别交单位圆于点P,P’,则点P与P’位置关系如何?(关于原点对称)

  ③设点P(x,y),那么点P’的坐标怎样表示?[P'(-x,-y)]

  ④sinα与sin(180°+α),cosα与cos(180°+α)关系如何?

  ⑤tanα与tan(180°+α),cotα与cot(180°+α)关系如何?

  ⑥经过探索,你能把上述结论归纳成公式吗?其公式特征如何?

  2)板书诱导公式

  sin(180°+α)=-sinα,cos(180°+α)=-cosα,

  tan(180°+α)=tanα,cot(180°+α)=cotα.

  结构特征:①函数名不变,符号看象限(把α看作锐角时).

  ②把求(180°+α)的三角函数值转化为求α的三角函数值.

  教学设想 激发学生做出猜想后,启发学生把特殊问题(求sin210°值)与一般问题进行类比,实现方法迁移,引导学生观察演示,发现角α与(180°+α)的终边及其与单位圆交点关于原点的对称关系,把求角(180°+α)的三角函数值转化为求α的三角函数值.对学生进行归纳思维训练,培养学生归纳思维能力.

  微机的动态演示,使学生对“α为任意角”有准确的认识,初步体验从特殊到一般的归纳推理形式,领会数学的归纳转化思想和方法.

  3)基础训练题组一

  求下列各三角函数值(可查表):

  ②试求sin[180°+(-210°)]的值

  分析:

  对于问题②学生可能出现的情况为:

  sin[180°+(-210°)]=-sin(-210°),

  或sin[180°+(-210°)]=sin(-30°).

  (至此,大多数学生已无法再运算)

  教学设想 在新的知识的基础上又导出新的未知,又一次创设问题情境,把学生的学习兴趣进一步推向高潮,激励学生要敢于迎接挑战、战胜困难、不断追求、陶冶情操、锻炼意志.

  4)引导学生观察演示(三),并思考下列问题:

  ①30°与(-30°)角的终边位置关系如何?(关于x轴对称)

  ②设30°与(-30°)角的终边分别交单位圆于点P,P’,则点P与P’的位置关系如何?(关于x轴对称)

  ③设点P(x,y),则点P’的坐标怎样表示?[P'(x,-y)]

  ④sin(-30°)与sin30°的值关系如何?

  教学设想 引导学生把求sin210°问题与sin(-30°)进行类比,实现方法迁移.通过微机动态演示,发现-30°与30°角的终边及其与单位圆交点关于x轴对称的关系.借助三角函数定义,寻找sin(-30°)与sin30°值的关系,达到转化为求0°~90°角三角函数的值的目的.

  5)导入新问题:对于任意角α,sinα与sin(-α)的关系如何呢?试说出你的猜想?

  6)引导学生观察演示(四)并思考下列问题:(设α为任意角)

  ①α与(-α)角的终边位置关系如何?(关于x轴对称)

  ②设α与(-α)角的终边分别交单位圆于点P,P’,则点P与P’位置关系如何?(关于x轴对称)

  ③设点P(x,y),则点P’的坐标怎样表示?[P'(x,-y)]

  ④sinα与sin(-α),cosα与cos(-α)关系如何?

  ⑤tanα与tan(-α),cotα与cot(-α)的关系如何?

  7)学生分组讨论,尝试推导公式,教师巡视,及时反馈、矫正、讲评.

  8)板书诱导公式

  sin(-α)=-sinα,cos(-α)=cosα.

  tan(-α)=-tanα,cot(-α)=-cotα.

  结构特征:函数名不变,符号看象限(把α看作锐角)

  把求(-α)的三角函数值转化为求α的三角函数值.

  9)基础训练题组(二):求下列各三角函数值(可查表)

  ③cos(-240°12′);④cot(-400°).

  3.3 构建知识系统、掌握方法、强化能力

  课堂小结:(以提问、填空形式让学生自己完成)

  1)诱导公式:

  sin(k·360°+α)=sinα.

  cos(k·360°+α)=cosα.

  tan(k·360°+α)=tanα.

  cot(k·360°+α)=cotα.(k∈Z)

  sin(180°+α)=-sinα.

  cos(180°+α)=-cosα.

  tan(180°+α)=tanα.

  cot(180°+α)=cotα.

  sin(-α)=-sinα.

  cos(-α)=cosα.

  tan(-α)=-tanα.

  cot(-α)=-cotα.

  2)公式的结构特征:函数名不变,符号看象限(把α看作锐角时)

  3)方法及步骤:

  教学设想 通过提问、填空的形式,引导学生概括归纳已有知识,形成知识系统,发现知识规律及其结构特征,深化对诱导公式内涵和实质的理解,强化记忆.

  挖掘知识系统体现数学的归纳转化思想方法,培养学生的概括抽象能力,形成知识网络和方法网络.

  4)能力训练题组:(检测学生综合运用知识能力)

  5)课外思考题.

  ①求下列各三角函数值:

  6)作业与课外思考题

  作业:P162习题十三(1)—(6)

  教学设想 通过能力训练题组和课外思考题检测学生综合运用知识的能力,培养学生的创造性思维能力,提高学生分析问题和解决问题的实践能力.

  为学生课外留下“余音”,培养学生养成自觉学习、积极探索的良好学习习惯,为下一节课学习诱导公式(四)、(五)作准备.

  4 教法分析

  根据教学内容的结构特征和学生学习数学的心理规律,本节课采用了“问题、类比、发现、归纳”探究式思维训练教学方法.

  4.1 利用已有知识导出新的问题,创设问题情境,引起学生学习兴趣,激发学生的求知欲,达到以旧拓新的目的.

  4.2 由(180°+30°)与30°,(-30°)与30°终边对称关系的特殊例子,利用多媒体动态演示,学生对“α为任意角”的认识更具完备性,通过联想,引导学生进行问题类比、方法迁移,发现任意角α与(180°+α),-α终边的对称关系,进行从特殊到一般的归纳推理训练,学生的归纳思维更具客观性、严密性和深刻性,培养学生的创新能力.

  4.3 采用问题设疑,观察演示,步步深入,层层引发,引导联想类比,进而发现、归纳的探究式思维训练教学方法.旨在让学生充分感受和理解知识的产生和发展过程.在教师适时的启发点拨下,学生在类比、归纳的过程中积极主动地去探索、发现数学规律(公式),培养学生的创新意识和创新精神,培养学生的思维能力.

  4.4 通过能力训练题组和课外思考题,把诱导公式(一)、(二)、(三)的应用进一步拓广,为演绎推导诱导公式(四)、(五)做好理论依据准备,把归纳推理和演绎推理有机结合起来,发展学生的思维能力.

  5 评价分析

  本节课教学过程中通过问题设疑,引导学生循序渐进的从特殊到一般进行联想、类比、归纳,发现数学公式,体现以教师为主导,学生为主体,积极思维的学习过程.

  在问题类比、方法迁移、归纳推理的思维训练过程中,师生的信息交流畅通,反馈及时,评价及时,矫正及时,学生思维活跃,教学活动始终处于教师期望控制中.

  5 教案设计说明

  5.1 关于本节课教学指导思想

  归纳推理是发现和获得知识的基本思维形式,拉普拉斯曾说:“发现真理的主要工具也是归纳和类比”.归纳思维在形成创新意识中具有特殊的重要的地位,归纳思维往往获得的是开拓性的创造(再创造).三角函数求值是三角函数中重要问题之一,诱导公式是解决此类问题的基本方法.教学过程中,通过问题设疑、多媒体动态演示等教学措施,创设问题情境,引导学生从特殊的、个别的属性,通过联想、类比、归纳出具有普遍的、一般的整体性质.体现了学生充分感受和理解知识的产生和发展过程,促使学生积极思维主动探索,勇于发现,敢于创新.通过从特殊到一般的归纳思维训练,学生主动地获得新的知识,并在获得知识的过程中,形成良好的思维品质,发展学生的思维能力.

  5.2 关于教学过程的设计

  1)重现已有相关知识,为学习新知识作好铺垫.

  2)思维总是从问题开始的,在sin1290°的求值过程中,从已知到未知,引发新的问题,营造氛围,引起学生学习需要和学习兴趣,激发学生的求知欲.

  3)数学的思想方法是数学素质的核心,由sin210°的求值过程,把未知转化为已知,引导学生发现推导诱导公式的方法和途径,领会数学的归纳转化思想方法.

  4)通过多媒体直观动态的演示,从特殊到一般完成所有情况的分类,引导学生联想,进行问题类比、方法迁移、归纳推理出具有普遍性的结论,形成公式,进行归纳思维训练.

  5)通过分析诱导公式的结构特征,强化对诱导公式的理解和记忆,深刻领会诱导公式的内涵和实质.构建知识系统,培养学生的概括抽象能力.

  6)通过基础训练题组和课外思考题的练习,掌握解决问题的方法,形成技能,提高学生分析问题和解决问题的能力.

任意角教案4

  教学目的:

  1、掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;

  2、通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;

  3、注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力。

  教学重点:

  同角三角函数的基本关系

  教学难点:

  (1)已知某角的一个三角函数值,求它的其余各三角函数值时正负号的选择;

  (2)三角函数式的化简;

  (3)证明三角恒等式。

  授课类型:

  新授课

  教学过程

  知识回顾:

  同角三角函数的基本关系公式:

  典型例题:

  例1.已知sin=2,求α的其余三个三角函数值。

  例2.已知:且,试用定义求的其余三个三角函数值。

  例3.已知角的终边在直线=3x上,求sin和cs的值。

  说明:已知某角的一个三角函数值,求该角的`其他三角函数值时要注意:

  (1)角所在的象限;

  (2)用平方关系求值时,所求三角函数的符号由角所在的象限决定;

  (3)若题设中已知角的某个三角函数值是用字母给出的,则求其他函数值时,要对该字母分类讨论。

任意角教案5

  教学目标

  1.明确等差数列的定义.

  2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

  3.培养学生观察、归纳能力.

  教学重点

  1.等差数列的概念;

  2.等差数列的通项公式

  教学难点

  等差数列“等差”特点的理解、把握和应用

  教具准备

  投影片1张

  教学过程

  (I)复习回顾

  师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

  (Ⅱ)讲授新课

  师:看这些数列有什么共同的特点?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

  生:积极思考,找上述数列共同特点。

  对于数列①(1≤n≤6);(2≤n≤6)

  对于数列②-2n(n≥1)(n≥2)

  对于数列③(n≥1)(n≥2)

  共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

  师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

  一、定义:

  等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

  如:上述3个数列都是等差数列,它们的公差依次是1,-2 。

  二、等差数列的通项公式

  师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

  若将这n-1个等式相加,则可得:

  即:即:即:……

  由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

  如数列①(1≤n≤6)

  数列②:(n≥1)

  数列③:(n≥1)

  由上述关系还可得:即:则:=如:

  三、例题讲解

  例1:(1)求等差数列8,5,2…的第20项

  (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

  解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

  (Ⅲ)课堂练习

  生:(口答)课本P118练习3

  (书面练习)课本P117练习1

  师:组织学生自评练习(同桌讨论)

  (Ⅳ)课时小结

  师:本节主要内容为:

  ①等差数列定义。

  即(n≥2)

  ②等差数列通项公式(n≥1)

  推导出公式:

  (V)课后作业

  一、课本P118习题3.2 1,2

  二、1.预习内容:课本P116例2P117例4

  2.预习提纲:

  ①如何应用等差数列的定义及通项公式解决一些相关问题?

  ②等差数列有哪些性质?

任意角教案6

  一、教学内容分析:

  高一年《普通高中课程标准教科书·数学(必修4)》(人教版A版)第12页1.2.1任意角的三角函数第一课时。

  本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。

  在本模块中,学生将通过实例学习三角函数及其基本性质,体会三角函数在解决具有变化规律的问题中的作用。

  二、学生学习情况分析

  我们的课堂教学常用“高起点、大容量、快推进”的做法,忽略了知识的发生发展过程,以腾出更多的时间对学生加以反复的训练,无形增加了学生的负担,泯灭了学生学习的兴趣。我们虽然刻意地去改变教学的方式,但仍太多旧时的痕迹,若为了新课程而新课程又会使得美景变成了幻影,失去新课程自然与清纯之味。所以如何进行《普通高中数学课程标准(实验)》(以下简称课程标准)的教学设计就很值得思考探索。如何让学生把对初中锐角三角函数的定义及解直角三角形的知识迁移到学习任意角的三角函数的定义中?

  《普通高中数学课程标准(实验)解读》中在三角函数的教学中,教师应该关注以下两点:

  第一、根据学生的生活经验,创设丰富的情境,例如单调弹簧振子,圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型以及三角函数模型的意义。

  第二、注重三角函数模型的运用即运用三角函数模型刻画和描述周期变化的现象(周期振荡现象),解决一些实际问题,这也是《课程标准》在三角函内容处理上的一个突出特点。

  根据《课程标准》的指导思想,任意角的三角函数的教学应该帮助学生解决好两个问题:

  其一:能从实际问题中识别并建立起三角函数的模型;

  其二:借助单位圆理解任意角三角函数的定义并认识其定义域、函数值的符号。

  三、设计理念:

  本节课通过多媒体信息技术展示摩天轮旋转及生成的图像,让学生感受到数学来源于生活,数学应用于生活,激发同学们学习的乐趣。并通过问题的探究,体验“数学是过程的思想”,改变课程实施过程于强调接受学习,死记硬背,机械训练的现状,倡导学生主动参与,乐于探究,勤于动手,培养学生学生收集和处理信息的能力,获得新知识的能力,分析与解决问题的能力以及交流合作的能力。

  四、教学目标:

  1.借助摩天轮的情景问题很好地融合初中对三角函数的定义,也能很好入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义;

  2.从任意角的三角函数的定义认识其定义域、函数值的符号;

  3.能初步应用定义分析和解决与三角函数值有关的一些简单问题。

五、教学重点和难点:

  1.教学重点:任意角三角函数的定义.

  2.教学难点:正弦、余弦、正切函数的定义域.

  具体设计如下:

  六、教学过程

  第一部分——情景引入

问题1:如图是一个摩天轮,假设它的中心离地面的高度为,它的直径为2R,逆时针方向匀速转动,转动一周需要360秒,若现在你坐在座舱中,从初始位置OA出发(如图1所示),过了30秒后,你离地面的高度为多少?过了45秒呢?过了秒呢?

  【设计意图】:高中学生已经具有丰富的生活经验和一定的科学知识,因此选择感兴趣的、与其生活实际密切相关的素材,此情景设计应该有助于学生对知识的发生发展的理解。这个数学模型很好融合初中对三角函数的定交,也能放在直角坐标系中,很好地将锐角三角函数的定义向任意角三角函数过渡,揭示函数的本质。

  第二部分——复习回顾锐角三角函数

  让学生自主思考如何解决问题:“过了30秒后,你离地面的高度为多少?”

【分析】:作图如图2很容易知道:从起始位置OA运动30秒后到达P点位置,由题意知,作PH垂直地面交OA于M,又知MH=,所以本问题转变成求PH再次转变为求PM。

  要求PM就是回到初中所学的解直角三角形的问题即锐角的三角函数。

问题2:锐角的正弦函数如何定义?

  【学生自主探究】:学生很容易得到

所以学生很自然得到“过了30秒后,过了45秒,你离地面的高度为多少?”

【教师总结】:在锐角的范围中,

  第三部分——引入新课

问题3:请问的范围呢?随着时间的推移,你离地面的高度为多少?能不能猜想?

  【分析】:若想做到这一点,就得把锐角的正弦推广到任意角的正弦。今天我们就要来学习任意角的三函数角函数。

问题4:如图建立直角坐标系,设点,能你用直角坐标系中角的终边上的点的坐标来表示锐角的正弦函数的定义吗?能否也定义其它函数(余弦、正切)?

【学生自主探究】:

  问题5:改变终边上的点的位置,这三个比值会改变吗?为什么?

  【分析】:先由学生回答问题,教师再引导学生选几个点,计算比值,获得具体认识,并由相似三角形的性质证明。

  【设计意图】:让学生深刻理解体会三角函数值不会随着终边上的点的位置的改变而改变,只与角有关系。

  通过摩天轮的演示,让学生感受到第一象限角的正弦可以跟锐角正弦的定义一样。

问题6:大家根据第一象限角的正弦函数的定义,能否也给出第二象限角的定义呢?

【学生自主探究】:学生通过上面已知知识得到

学生定义好第二象限角后,让学生自己算出摩天轮座舱在第150秒时,离地面的高度?

通过摩天轮知道:

由此得到:

【设计意图】:通过这个,让学生检验在第二象限角是否正确?

问题7:在第三象限角或第四象限能成立吗?

  【设计意图】:让学生通过模型,检验定义是否正确,从中让学生自己发现正、负符号的偏差。

(可以让学生取,从而得到=,发现这与不相符,实际上是)

【教师总结】:我们通过个模型知道如何在某些范围内如何计算自已此时离地面的高度,用数学模型来表示,当摩天轮转动,角度的概念也不知不觉地推广到任意角,对于任意角的正弦不能只是依赖于角所在的直角三角形中的对边的长度比斜边长度了,我更应该用点P的横坐标来代替或,那么这样就能够很好表示出正弦的函数任意角的定义。

  第三部分——给出任意角三角函数的定义

如图3,已知点为角终边上的点,点到顶点的距离为R,则

()

()

()

  【分析】:让学生通过刚才的模型进一步体验任意角三角函数的定义要点:点、点的坐标、点到顶点的距离。

  问题8:当摩天轮的半径R=1时,三角函数的定义会发生怎样的变化。

【学生自主探究】:,,。

  教师引导学生进行对比,学生通过对比发现取到原点的距离为1的点可以使表达式简化。

  教师进一步给出单位圆的定义

  给出下列表格,让学生自己补充完整。

三角函数
定义一:
定义二:
定义域

及时归纳总结有利学生对所学知识的巩固和掌握。

  第三部分——例题讲解

例1.(课本P14例2)已知角终边经过点,求角的正弦、余弦和正切值。

  【分析】:让学生现学现卖,得用上面的定义二就可以得到答案。

例2.(课本P14例1)求的正弦、余弦和正切值。

【学生自主探究】:让学生自己思考并独立完成。然后与课本的解答相对比一下,发现本题的难点。

【教师讲解】:本题题意很简单,但是如何入手却是难点,关键是对本节课的三角函数定义的要点有没有领会清楚(任意角三角函数的定义要点:点、点的坐标、点到顶点的距离),因此本题的重点之处是如何利用单位圆找到这个点P,如图4可以知道,又点P在第四象限,得到,这样就可以很容易得到本题答案。

不妨让学生取,能否也得到点P的坐标,得到的三角函数值是否与单位圆的一样。这样可以让学生更深刻体验三角函数的定义。

  第四部分——巩固练习

练习1.例2变式求的正弦、余弦和正切值。

  练习2.问题9:通过观察摩天轮的旋转,三角函数的角的终边所在象限不同,请说说三角函数在各个象限内的三角函数值的符号?独立完成课本P15的“探究”。

  【设计意图】:练习1、练习2的设计与例2、例3衔接,主要目的是帮助学生巩固三角函数的本质特征,引导学生从定义出发利用坐标平面内的点的坐标特征自主探究三角函数的有关问题的思想方法。并在特殊情形中体会数形结合的思想方法。

  第五部分——小结与作业

  学生自我总结

  作业:P23习题1.2A组 1,2,3

  七、教学反思

  上述教学设计及具体教学实施过程我认为有以下几点意义:

  教学设计紧扣课程标准的要求,重点放在任意角的三角函数的理解上。背景创设是学生熟悉的摩天轮,认知过程符合学生的认知特点和学生的身心发展规律——具体到抽象,现象到本质,特殊到一般,这样有利学生的思考。

  情景设计的数学模型很好地融合初中对三角函数的定义,也能很好引入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,同时能够揭示函数的本质。

  通过问题引导学生自主探究任意角的三角函数的生成过程,让学生在情境中活动,在活动中体验数学与自然和社会的联系、新旧知识的内在联系,在体验中领悟数学的价值,它渗透了蕴涵在知识中的思想方法和研究性学习的策略,使学生在理解数学的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。这和课程标准的理念是一致的。

  《标准》把发展学生的数学应用意识和创新意识作为其目标之一, 在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间, 促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力, 发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断。在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、分析自然现象、解决实际问题的策略, 使学生认识到数学原来就来自身边的现实世界, 是认识和解决我们生活和工作中问题的有力武器, 同时也获得了进行数学探究的切身体验和能力。增进了他们对数学的理解和应用数学的信心。

《任意角的三角函数》教案这篇文章共12258字。

任意角教案8

  知识目标:

  1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义。

  2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值。

  能力、情感目标:

  1.经历由情境引出问题,探索掌握数学知识,再运用于实践过程,培养学生学数学、用数学的意识与能力。

  2.体会数形结合的数学思想方法。

  3.培养学生自主探索的精神,提高合作交流能力。

  重点、难点:

  1.直角三角形锐角三角函数的意义。

  2.由直角三角形的边长求锐角三角函数值。

  教学过程:

  一、创设情境

  前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。但有些问题单靠相似与勾股定理是无法解决的。同学们放过风筝吗?你能测出风筝离地面的高度吗?

  学生讨论、回答各种方法。教师加以评论。

  总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC了,但实际上要测量AC是很难的。因此,我们换个角度,如果可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。

  (由一个学生比较熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。由此导入新课)

  二、新课讲述:

  在Rt△ABC中与Rt△A1B1C1中∠C=90°,C1=90°∠A=∠A1,∠A的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2(学生探索,引导学生积极思考,利用相似发现比值相等)

  若在Rt△A2B2C2中,∠A2=∠A,那么

  问题1:从以上的探索问题的过程,你发现了什么?(学生讨论)

  结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。

  在一个直角三角形中,只要角的大小一定,它的对边与斜边的比值也就确定了,与这个角所在的三角形的大小无关,我们把这个比值叫做这个角的正弦,即∠A的正弦=,记作sinA,也就是:sinA=

  几个注意点:

  ①sinA是整体符号,不能所把看成sinA;

  ②在一个直角三角形中,∠A正弦值是固定的,与∠A的两边长短无关,当∠A发生变化时,正弦值也发生变化;

  ③sinA表示用一个大写字母表示的一个角的正弦,对于用三个大写字母表示的角的正弦时,不能省略角的符号“∠”;例如表示“∠ABC”的正弦时,应该写成“sin∠ABC”;

  ④SinA=可看成一个等式。已知两个量可求第三个量,因此有以下变形:a=csinA,c=

  由此我们又可以知道,在直角三角形中,当一个锐角的大小保持不变时,这个锐角的邻边与斜边、对边与邻边、邻边与对边的比值也是固定的。分别叫做余弦、正切、余切。

  在Rt△ABC中

  ∠A的邻边与斜边的比值是∠A的`余弦,记作

  ∠A的对边与邻边的比值是∠A的正切,记作

  ∠A的邻边与对边的比值是∠A的余切,记作

  (以上可以由学生自行看书,教师简单讲述)

  锐角三角函数:以上随着锐角A的角度变化,这些比值也随着发生变化。我们把sinA、csA、tanA、ctA统称为锐角∠A的三角函数。

  问题2:观察以上函数的比值,你能从中发现什么结论?

  结论:

  ①、锐角三角函数值都是正实数;

  ②、0<sinA<1,0<csA<1;

  ③、tanActA=1。

  三、实践应用

  例1求出如图所示的Rt△ABC中∠A的四个三角函数值。

  问题3:以上例子中,若求sinB、tanB呢?

  问题4:已知:在直角三角形ABC中,∠C=90&rd;,sinA=4/5,BC=12,求:AB和csA

  (问题3、4从实例加深学生对锐角三角函数的理解,以此再加以突破难点)

  四、交流反思

  通过这节课的学习,我们理解了在直角三角形中,当锐角一定时,它的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的,这几个比值称为锐角三角函数,它反映的是两条线段的比值;它提示了三角形中的边角关系。

  五、课外作业:

  同步练习

任意角教案9

  教学目标

  一、知识与技能

  (1)理解并掌握弧度制的定义;

  (2)领会弧度制定义的合理性;

  (3)掌握并运用弧度制表示的弧长公式、扇形面积公式;

  (4)熟练地进行角度制与弧度制的换算;

  (5)角的集合与实数集 之间建立的一一对应关系。

  (6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

  二、过程与方法

  创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性。根据弧度制的定义推导并运用弧长公式和扇形面积公式。以具体的实例学习角度制与弧度制的互化,能正确使用计算器。

  三、情态与价值

  通过本节的学习,使同学们掌握另一种度量角的单位制―――弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。角的概念推广以后,在弧度制下,角的集合与实数集 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备。

  教学重难点

  重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用。

  难点: 理解弧度制定义,弧度制的运用。

  教学工具

  投影仪等

  教学过程

  一、 创设情境,引入新课

  师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1。6公里)

  显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制。他们的长度单位是不同的,但是,他们之间可以换算:1英里=1。6公里。

  在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制―――弧度制。

  二、讲解新课

  1。角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等。

  弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本,自行解决上述问题。

  2。弧度制的定义

  长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)。

  (师生共同活动)探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与圆交于点。请完成表格。

  我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如―π,―2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。

  角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应。

  四、课堂小结

  度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

  五、作业布置

  作业:习题1。1 A组第7,8,9题。

任意角教案10

  教学目标

  1、知识与技能

  (1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

  (2)能熟练运用正弦函数的性质解题。

  2、过程与方法

  通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

  3、情感态度与价值观

  通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

  教学重难点

  重点:正弦函数的性质。

  难点:正弦函数的’性质应用。

  教学工具

  投影仪

  教学过程

  创设情境,揭示课题

  同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

  探究新知

  让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

  (1)正弦函数的定义域是什么?

  (2)正弦函数的值域是什么?

  (3)它的最值情况如何?

  (4)它的正负值区间如何分?

  (5)?(x)=0的解集是多少?

  师生一起归纳得出:

  1.定义域:y=sinx的定义域为R

  2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)

  再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]

任意角教案11

  【教学目标:】

  1.通过对初中锐角三角函数定义的回忆,掌握任意角三角函数的定义法,并掌握用单位圆中的有向线段表示三角函数值。

  2.掌握已知角终边上一点坐标,求四个三角函数值。(即给角求值问题)

  【教学重点:】

  任意角的三角函数的定义。

  【教学难点:】

  任意角的三角函数的定义,正弦、余弦、正切这三种三角函数的几何表示。

  【教学用具:】

  直尺、圆规、投影仪

  【教学步骤:】

  1.设置情境

  角的范围已经推广,那么对任一角是否也能像锐角一样定义其四种三角函数呢?本节课就来讨论这一问题。

  2.探索研究

  (1)复习回忆锐角三角函数

  我们已经学习过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值,定义了角的正弦、余弦、正切、余切的三角函数,本节课我们研究当角是一个任意角时,其三角函数的定义及其几何表示。

  (2)任意角的三角函数定义

  (3)三角函数是以实数为自变量的函数

  对于确定的`角,分别对应的比值各是一个确定的实数,因此,正弦,余弦,正切分别可看成从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,当采用弧度制来度量角时,每一个确定的角有惟一确定的弧度数,这是一个实数,所以这几种三角函数也都可以看成是以实数为自变量,以比值为函数值的函数。

  即:实数→角(其弧度数等于这个实数)→三角函数值(实数)

  (4)三角函数的一种几何表示

  利用单位圆有关的有向线段,作出正弦线,余弦线,正切线。

  设任意角的顶点在原点,始边与轴的非负半轴重合,终边与单位圆相交于点,过作轴的垂线,垂足为;过点作单位圆的切线,这条切线必然平行于轴,设它与角的终边(当为第一、四象限时)或其反向延长线(当为第二、三象限时)相交于,当角的终边不在坐标轴上时,我们把,都看成带有方向的线段,这种带方向的线段叫有向线段。由正弦、余弦、正切函数的定义有:

  这几条与单位圆有关的有向线段叫做角的正弦线、余弦线、正切线。当角的终边在轴上时,正弦线、正切线分别变成一个点;当角的终边在轴上时,余弦线变成一个点,正切线不存在。

  (5)例题讲评

感谢您花时间阅读本文。如果您觉得任意角教案这篇文章对您有所帮助,我们非常希望您能够将其分享给更多的人。最后我们将继续努力,为您提供更多有价值的内容。祝您生活愉快!

本内容由南国猫觅海收集整理,不代表本站观点,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:https://wenku.puchedu.cn/63209.html

(0)
南国猫觅海南国猫觅海

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注