解方程优秀教案公开课设计精选

本教案旨在帮助学生掌握解方程的基本方法和技巧。通过学习解方程的基本步骤和解题技巧,学生将学会正确地解出方程并运用在实际问题中。教案包含多种练习和例题,例如方程变形、代入消元法、加减消元法等,以帮助学生提高解题能力和数学思维能力。下面是小编精心整理的解方程优秀教案公开课设计精选,欢迎大家阅读!

解方程优秀教案公开课设计精选

解方程优秀教案公开课设计精选1

【教学目标】

1.使学生学会用等式的性质解方程,并能借助例子初步理解“方程的解”

和“解方程”的含义。

2.为学生营造自主的探究空间,鼓励学生借助已有的学习经验解决新问题,

培养学生的探究能力、自学能力,从中感受数形结合、迁移、化归等数学

思想。

3.培养学生敢于质疑、善于表达、回顾检验、规范书写等良好的学习习惯,

体会数学的逻辑美、形式美。

【教学重点】

会用等式性质正确的解方程,理解方程左右两边变形的道理。

【教学难点】

理解方程左右两边变形的道理,体会用等式性质解方程的优越性。

【学情分析】本节课的内容是在学生学习了一定的算数知识(如整数、小

数的四则运算及其应用),已初步接触了一点代数知识(如运算定律、用字

母表示数、方程的意义和等式的性质)的基础上对形如x+a=b和x-a=b的方程解法进行学习。综合考虑五年级学生已有的分析能力以及解决问题的

能力,在教学过程中我力图体现学生的主体地位,将课堂还给学生。教学

时,在教师的适当引导下,借助天平的演示帮助学生理解并掌握解方程的

方法。

【教学过程】

一、唯美情境自信起航

师:同学们,瞧,今天老师又给大家带来这个学习的好伙伴,谁?

生:天平。

师:上几节课借助它我们学习了哪些知识?

生:什么是方程?

生:等式的性质。

师:现在谁来说一说什么叫方程?

生:含有未知数的等式就是方程。

师:也就是说方程一定是等式,那等式的性质是什么呢?

生:等式两边加上或减去同一个数,左右两边仍然相等。

等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。师:说的非常熟练,同学们对前面所学知识掌握的真扎实!今天这节课,

我们就利用这些知识,借助天平来学习一个新知识,什么?——解方程。(生读师板书课题)

师:看到这个课题你想知道什么?

生:

师:是什么?怎样做?为什么?

师:看来咱班同学很会提问题,提的这些问题都很有价值,那你们有没有

信心再来解决这些问题?请看大屏幕。

【设计意图:利用复习旧知导入新课,目的是让学生体会知识之间的前后

联系,帮学生架起一座通往新知的桥梁。通过提问题,让学生明确学习的

目标,激发探索的欲望。】

二、美妙体验自信成长

1、探究如何解方程

(1)说图意

师:谁能来说一说这幅图的意思?

生:盒子里x个皮球加上外面的3个皮球一共是9个皮球。

师:是这个意思吗?

生:是。

师:谁能用一个方程表示出来?

生:x+3=9

师:如果用天平来表示它们,你认为天平的两边应该如何摆放?生:天平的左边放x个加3个皮球,右边放9个皮球。

师:同意他的方法吗?

生:同意。

师:我们就按照他说的来放。为了方便我们可以用木块代替皮球,天平的左边放上x和3个木块,右边放上9个。现在天平什么状态?

生:天平保持平衡。

师:它能不能表示x+3=9?

生:能!

(2)利用已有知识解决

师:x的值是多少?(课件出示题目要求:x的值是多少?)

生: 6

师:你怎么想的?

生:9-3=6或6+3=9

师:有道理吗?

生:有。

师:看来这道题数比较小,大家一眼就看出x的值是6。

师:哎,同学们咱换个角度,能不能利用上节课的学习经验,也就是根据

等式的?(生:性质。)求出x的值呢?

生:

(3)利用等式的性质解决

师:哦有想法了。下面就请同学们拿出自主探究单,尝试着用等式的

性质求出x的值,并把你的想法在天平上表示出来。(发自主探究单1,例题图)

独立解决。

小组交流。

师:我发现大多数同学都已经写完了,下面请同学们在小组内交流一

下你的想法。交流顺序是:2号同学先说,3、4、5、6号补充,最后1号总结。

【设计意图:通过自主探究、合作交流让学生亲历、体验利用等式性质解

方程的过程,借助天平让学生体会数形结合思想的应用。】

三、美丽展示自信分享

全班汇报,说想法。

师:谁先来说一说你们的想法?

生1:

生1:你们同意我们的想法吗?(同意)还有问题吗?

生:为什么-3?

师:他的意思是要求x,就让左边只剩x,那右边为什么也-3?生:师:解释的真清楚!请回。大家听懂了吗?

生:

师:都听懂了?谁再来说一说这儿为什么要减3?

师:他解释的怎么样?

生:

师:你们的做法和想法跟它们一样吗?

生:一样。

师:看来同学们能用等式的性质求出x的值,并借助天平说明了自己的想法。真是太棒了!

师:下面我们再一起梳理一下刚才同学们的思考过程。(课件演示天平表示图与算式每一步的对应。第一步原方程,第二步:师:要求x,就必须把方程左边的+3减去,也就是把这三个去掉,左边就写成了x+3-3,为了保持天平平衡,根据等式的性质,右边也要-3,左右两边仍然相等。第三步师:这样左边就只剩下了x,右边还剩6个,所以x=6。)师:刚才我们利用等式的性质求出了x的值,下面你们说着这个过程我把它写下来。

生说师板书完整的解方程过程。

x+3=9

x+3-3=9-3

x=6

师:同学们,你们觉得老师的板书与你的书写有什么不同?

生:等号都对齐了。

师:知道老师为什么要把等号对齐吗?

生:

师:感觉不错!是的,因为天平在变化的过程中,始终保持平衡,所

以习惯上我们把所有的等号都对齐。这样看起来也更美观整齐。

【设计意图:通过让学生展示交流自己解决问题的过程,培养学生敢于表达、敢于质疑的学习品质,让学生初步感受解方程的过程实际上就是一连

串依据等式性质的演绎推理过程,目的就是让方程的左边只剩x。】

四、最美挑战自信绽放

师:那我们这样求出的x=6究竟对不对呢?它又叫什么呢?下面就请同学们自学课本67页,看谁的收获多。

生独立自学。

师:谁借助这道例题来说说你知道了什么?

生:使方程左右两边相等的未知数的值叫方程的解。

像上面,x=6就是方程x+3=9的解。

求方程的解的过程叫解方程。

师:哦,你知道了这里的x=6就是方程x+3=9的——?解;你还知道了求x=6的过程叫——?解方程所以,以后我们解方程时要先写上“解”字。

师:除了这些收获,你还知道了什么?

生:我还知道了如何检验x=6究竟对不对。

师:哦,快到前面来说给大家听听?

生上前说。

师:你的意思是把x=6代入方程,左边就是6加3等于9,右边也是9,左右两边相等,所以x=6是方程x+3=9的解。这真是个好办法!谢谢你请回。

师:老师来当你们的小助手,你们说着我把检验过程完整的写下来。(师板书检验过程并重复生说)

师:把x=6代人方程得:方程左边=x+3就是

生: =6+3

=9

=方程右边

根据方程的解的意义判断:所以,x=6是方程的解。

师:大家会检验了吗?

生:会了。

【设计意图:这部分知识较为琐碎,采用“自学”的方式,一是培养学生

的自学能力;二是给学生一个充分的空间帮助其理解“解方程”和“方程

的解”这两个概念,并初步掌握“检验”的方法。】

师:同学们真棒!不仅会提出问题还会解决问题。知道什么叫解方程了

吗?

师:解方程根据什么?

生:等式的性质。

师:是的,同学们会根据等式的性质解方程,还借助天平弄清楚了背后

的道理。

师:借助以上的学习经验,看,这道题你会做吗?

我能行:

x-15=7

(生独立完成,找一位同学板演。)

生:大家和我做的一样吗?

生:一样。

师:都一样?那x=22是不是这个方程的解呢?我们还需要?

生:检验。

师:你口头检验一遍给大家听听好吗?

生:把x=22代入方程……

师:同学们一定要养成检验的好习惯哟!

师:哎,这里你怎么想到+15的呢?给大家说一说。

生:-15与+15互相抵消,就可以只剩x了。

师:这里又为什么也+15呢?

生:根据等式的性质。

师:我们班有位同学是这样做的对吗?错在哪?怎么改?

生:

师:你太棒了!我替我们班的这个同学谢谢你!同学们请看,这两道题最大的不同是这道题是x加个数,而这一道是x减一个数。但我们在解这两个方程时相同之处是什么?

生:

师:是呀,我们根据的都是等式的性质,在方程的左右两边同时加上

或减去一个相同的数,使方程的左边只剩x。

【设计意图:借助已有的学习经验进行变式练习,一是让学生进一步巩固

解方程的方法、步骤;二是通过与例题的对比让学生体会解方程的思路相同,为了得到x=?,就想办法让方程的一边只剩x;依据相同都是等式性质。】

师:现在,你能自己列出一道方程并把它解出来吗?等会看谁编的题目

会给大家带来新情况。

出示

我最棒:

列方程并求出方程的解。

生自由编。

两个生展示。

师:我发现大多数同学写出的都是这两种情况,这两位同学给我们带

来了新情况,我们一起来欣赏一下。

生上前展示:我想到的新情况是……

师:哦你给大家带来了x乘或除以一个数的新情况。

师追问给大家说说你为什么想到左边……右边……根据……

再次强调让方程一边只剩x.

师:同学们,现在对解方程有感觉了吗?不管解哪种情况的方程最关

键的都是什么?

生:

师:是的,想办法让方程的一边只剩x,依据的是等式的性质。

【设计意图:进一步培养学生借助获得的学习经验利用知识迁移解决问题

的能力,引导学生自行总结出解方程的思路、依据,体会用等式的性质解

方程的优越性:不用再根据运算关系解方程,思路更为统一。】师:这节课马上要下课了。最后,我们再一起回顾我们这节课的学习

过程,我们先学会了解哪个方程?

生:x+3=9

师:是的,我们先借助天平利用数形结合思想探究出了形如x+3=9的这类方程的解法,并弄清楚了背后的道理。在此基础上学会了解x-15=7这类方程,又借助这些学习经验解决了一些新情况,最后同学们又总结出了

解方程的关键是?

生:

师:解方程最关键的是想办法让方程的一边只剩x,找到另一边与与它相等的值,这样就得到了方程的解。整个过程我们都是利用了?生:等式

的性质(课件出示)

师:看来我们只要从变化中抓住不变的本质,所有的问题就能迎刃而解了。

希望同学们能利用这节课的学习经验继续解决更多的新情况,在以后的学

习过程中你就会慢慢体会到学习解方程有什么用。这节课就上到这,下课!【设计意图:通过对学习过程的回顾,让学生深刻体会解方程的过程就是

依据等式的性质,最终将原方程转化为与其等价的“x=?”的形式,并让学生体会“变与不变”、“数形结合”“建模”、“化归”等数学思想的作用。】【教学反思】

《解方程》这部分内容的编排、解题思路有了很大的变化。从解题思路上看先是根据运算关系解方程,到后来的根据天平平衡的道理解方程,再到现在的直接根据等式性质来解方程。在编排顺序上先是在多种方法求出未

解方程优秀教案公开课设计精选2

一、教学目标:

1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。

2、会用等式性质解形如x+5=12的简单方程。

3、培养观察、分析概括的能力。

二、课时安排:

1课时

三、教学重点:

能用等式的性质解简单的方程。

四、教学难点:

了解等式的性质。

五、教学过程

(一)导入新课

故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?

(板书:大象的体重=石头的重量)

师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。

检查预习。

(二)讲授新课

探究一:学习等式性质

1、师操作:在天平两侧各放一个5克砝码。

提问:你能用一个等式表示天两边关系吗?

提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?

提问:你还能用一个等式表示吗?

教师呈现其他天平直观图,鼓励学生观察并写出等式。

全班交流,教师总结概括出等式性质。

等式两边都加上同一个数,等式仍然成立。

师操作在刚才的基础上一个一个减砝码。

提问:你能用等式来表示吗?

提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?

提问:你还能用一个等式表示吗?

教师呈现其他天平直观图,鼓励学生观察并写出等式。

全班交流,教师总结概括出等式性质。

等式两边都减去同一个数,等式仍然成立。

3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。

(三)重点精讲。

探究二:学习解方程

师板书x+2=10问:用天平如何表示?

问:如何用刚才的知识解方程?(两边都减去2)

1、师根据学生回答板书并画出天平图。

2、师在解题示范时要注重“解”和“等于号”的书写要求。

3、交代检验方法。

4、学生试着解方程。

y-7=12 23+x=45

组内交流收获和疑惑。

小组汇报。

教师总结板书:根据等式的性质解方程。

(五)随堂检测

1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。

2、看图列方程,并解方程。

3、解方程。

(1)x – 19 = 2

(2)x – 12.3 = 3.8

4、看图列方程,并解方程。

5、看图列方程,并解方程。

6、看图列方程,并解方程。

板书设计

x+5=7 x-5= 7

解:x+5-5=7-5解:x-5+5=7+5

x=2 x=12

等式的两边同时加上或者减去同一个数,等式仍然成立。

七、作业布置

课本69页5、6题

八、教学反思

解方程优秀教案公开课设计精选3

教学目标

   1、结合具体图例,根据等式不变的规律会解方程。

  2、掌握解方程的格式和写法。

  3、进一步提高学生分析、迁移的能力。

  知识重点

  掌握解方程的方法

  教学过程

  教学方法和手段

  引入

  前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

  教学过程

  新知学习

  (一) 教学例1

  出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

  要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

  抽答。

  方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

  化简,得到x=6

  这就是方程的解,谁再来回顾一下我们是怎样解方程的?

  左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的.变换,如何使方程的一边只剩下一个x即可。

  追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

  要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

  板书:方程左边=x+3

  =6+3

  =9

  =方程右边

  所以,x=6是方程的解。

  小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

  (二)教学例2

  利用等式不变的规律,我们再来解一个方程。

  出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

  抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

  展示、订正。

  通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

  课堂练习

  1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。

  2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。

  试着解方程:x-2.4=6x÷9=0.7(强调验算)

  小结与作业

  课堂小结

  这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

  课后追记

  如果X前面是加号,方程两边就减去另外一个数,如果X前面是乘号,方程两边就除以乘号前面的数。

解方程优秀教案公开课设计精选4

教学目标

1.会列二元一次方程组解简单的应用题并能检验结果的合理性。

2.提高分析问题、解决问题的能力。

3.体会数学的应用价值。

教学重点

根据实际问题列二元一次方程组。

教学难点

1.找实际问题中的相等关系。

2.彻底理解题意。

教学过程

一、引入。

本节课我们继续学习用二元一次方程组解决简单实际问题。

二、新课。

例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?

探究: 1. 你能画线段表示本题的数量关系吗?

2.填空:(用含s、v的代数式表示)

设小琴速度是v千米/时,她家与外祖母家相距s千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米。

3.列方程组。

4.解方程组。

5.检验写出答案。

讨论:本题是否还有其它解法?

三、练习。

1.建立方程模型。

(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度

(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?

2.p38练习第2题。

3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。

四、小结。

本节课你有何收获?

解方程优秀教案公开课设计精选5

一、教材分析

1.教材的地位与作用

二元一次方程组是新人教版七年级数学(下)第八章第一节的内容。在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用。本节内容主要学习和二元一次方程组有关的四个概念。本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的预备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用。

2.教学目标

[知识技能]

掌握二元一次方程、二元一次方程组及它们的解的概念,通过实例认识二元一次方程和二元一次方程组也是反映数量关系的’重要数学模型。

[数学思考]

体会实际问题中二元一次方程组是反映现实世界多个量之间相等关系的一种有效的数学模型,能感受二元一次方程(组)的重要作用。

[解决问题]

通过对本节知识点的学习,提高分析问题、解决问题和逻辑思维能力。

[情感态度]

引导学生对情境问题的观察、思考,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

3.教学重点与难点

按照《课程标准》的要求,根据上述地位与作用的分析及教学目标,本节课中相关概念的掌握是教学重点。

通过学生亲身体验,理解二元一次方程(组)解的个数的确定。

二、学情分析

七年级学生思维活跃,好奇心强,希望平等交流研讨,厌烦空洞的说教。因此,在教学过程中,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,激发他们的兴趣。一方面通过学案与课件,使他们的注意力始终集中在课堂上;另一方面创造条件和机会,让学生自主练习,合作交流,培养学生学习的主动性、与人合作的精神,激发学生的兴趣和求知欲,感受成功的乐趣。

三、教法与学法

1.教法

数学课程标准明确指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。所以我在教学中不只传授知识,更要激发学生的创造思维,引导学生探究,发现结论的方法。正所谓“教是为了不教”。所以我采用引导发现法为主,情景问答法、讨论法、活动竞赛法、利用多媒体课件辅助教学等完成本节的教学,真正做到教师的主导地位。

2.学法

学生是学习的主体,所以本节教学中,引导学生自主探究、归纳总结,运用自主探索与合作交流开拓自己的创造思维。这样调动学生的积极性,激发学生兴趣,使学生由被动学习变为积极主动的探究,这也符合数学的直观性和形象性。

四、教学过程与课堂活动

为了达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:

1、创设情境,引入概念

nba篮球联赛情景再现,利用世界男篮亚裔球星林书豪激励学生相信自已能够创造奇迹的励志教育,感受数学来源于生活,调动学生顺利引入新课。

2、观察归纳,形成概念

概念的教学,不纠缠于其语言本身,而是通过类比整合形成新的概念。由于学生对一元一次方程概念已经很了解,我主要采用了类比的方法,弱化概念的教学,强化对概念的正确理解,通过学案与课件相结合的方式,以题组形式分层渐进式训练,让学生明晰概念,巩固概念,强化概念,提升能力。

3、拓展延伸,深入概念

知识的掌握,能力的提升是一个不断循序上升的过程,而教学过程更是一个生动活沷,主动和富有个性的过程,让学生认真听讲、积极思考,动脑动口,自主探索,合作交流。

4、当堂检测,强化概念

通过课堂随机选题的形式答题,通过合作小组交流,全班展示交流,使学生互相学习、互相促进、互相竞争,将小组的认知成果转化为全班同学的共同认知成果,从而营造宽松、民主、竞争、快乐的学习氛围,让学生体验到学习的快乐,成功的喜悦,从而充分体现数学教学主要是学生数学活动教学的基本理念。

5、反思小结,回归概念

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,培养学生形成完整的知识体系,养成及时反思的习惯。

五、教后反思

美国国家研究委员会在《人人关心数学教育的未来》的报告中指出“没有一个人能教好数学,好的教师不是在教数学,而是在激发学生自已去学数学”。只有学生通过自已的思考建立对数学的理解力,才能真正的学好数学。本节课,我致力于让学生自已去发现数学,研究数学,加强数学思想、方法及科学研究方法的指导,引导学生不断从“学会数学”到“会学数学”,但教无止境,课堂仍然留有遗憾,在今后的教学中,我将从这样的三个方面加强对课堂的研究:一是加强对学法研究、学情研究,让教学方式与内容更符合学生认知规律,更贴近学生实际;二是重视学生课堂的学习感受,营造民主、开放、合作、竞争的学习氛围;;三是提高教学机智、不断创新优化教学方法,科学、合理、灵活地处理课堂上生成的问题。

解方程优秀教案公开课设计精选6

【教学内容】:教材P69例4、例5及练习十五第6、8、9、13题。

【教学目标】:

知识与技能:巩固利用等式的性质解方程的知识,学会解ax ±bx=c与a(x ±b)=c类型的方程。

过程与方法:进一步掌握解方程的书写格式和写法。

情感、态度与价值观:在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。

【教学重、难点】

重 点:理解在解方程过程中,把一个式子看作一个整体。

难 点:理解解方程的方法。

【教学方法】:观察、分析、抽象、概括和交流。

【教学准备】:多媒体。

【教学过程】

一、复习导入

1.出示习题。解下面方程:4x =8.6 48.34-x =4.5

学生自主解答练习,并说一说是怎么做的。并在订正的过程中,规范书写。

2.引出:这节课我们来继续学习解方程。(板书课题:解方程)

二、互动新授

1.出示教材第69页例4情境图。

引导学生观察,并说一说图意。再让学生根据图列一个方程。

学生列出方程3x +4=40后,让学生说一说怎么想的。

(一盒铅笔盒有x 支铅笔,3盒铅笔盒就有3x 支铅笔。)

在学生说自己的想法时,引导学生说出把3个未知的铅笔盒看作一部分,4支铅笔看作一部分。

2.让学生试着求出方程的解。

学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。

学生可能会疑惑:方程的左边是个二级运算不知该如何解。

也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)

提问:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?

学生会说:先算出3个铅笔盒一共多少支,再加上外面的4支。

师小结:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?(3x )

让学生尝试继续解答,订正。

根据学生的回答,板书解题过程:

3x +4=40

解: 3x =40-4

3x =36 (先把3x 看成一个整体)

3x ÷3=36÷3

x =12

让学生同桌之间再说一说解方程的过程。

3.出示教材第69页例5:解方程2(x -16)=8。

先让学生说一说方程左边的运算顺序:先算x -16,再乘2,积是8。

思考:你能把它转换成你会解的方程吗?

让学生尝试解方程,再在小组内交流自己的做法,然后集体订正,学生可能会有两种做法:

(1)利用例4的方法来解。

让学生说一说自己的思考,重点说一说把什么看作一个整体?

(先把x -16看作一个整体。)板书计算过程:

2(x -16)=8

解:2(x -16)÷2=8÷2(把x -16看作一个整体)

x -16=4

x -16+16=4+16

x =20

(2)用运算定律来解。

引导学生观察方程,有些学生会看出这个方程是乘法分配律的逆运算。可以运用乘法分配律把它转化成我们学过的方程来解。

根据学生回答,板书计算过程:

2(x -16)=8

解: 2x -32=8 (运用了乘法分配律)

2x -32+32=8+32 (把2x 看作一个整体)

2x =40

2x ÷2=40÷2

x =20

4.让学生检验方程的解是否正确。先说一说如何检验,再自主检验。

(可以把方程的解代入方程中计算,看看方程左右两边是否相等。)

三、巩固拓展

1.完成教材第69页“做一做”第1题。

先让学生分析图意,再列方程解答。解答时,让学生说一说自己的想法,把谁看作一个整体。(可以把5个练习本的总价5x 看作一个整体。)

2.完成教材第69页“做一做”第2题。

先让学生自主解方程,再集体订正。

3.完成教材第71页“练习十五”第8题。

先让学生说一说图意,再列方程解答。特别是第一幅图,要提醒学生天平两边的砝码不一样重,审题要细心。第二幅图,学生可能会列出方程30×2+2x =158,再引导学生观察有两个30和两个x ,可以运用乘法分配律。

四、课堂小结

这节课你学会了什么知识?有哪些收获?

引导总结:

1.在解较复杂的方程时,可以把一个式子看作一个整体来解。

2.在解方程时,可以运用运算定律来解。

五、作业:教材第71~72页练习十五第6、9、13题。

【板书设计】:

解方程

例4:3x +4=40

解: 3x =40-4 (先把3x 看成一个整体)

3x =36

3x ÷3=36÷3

x =12

例5:2(x -16) =8 (把x -16看作一个整体)

方法1: 方法2:

解:2(x -16)÷2=8÷2 解:2x -32=8 (运用了乘法分配律)

x -16=4 x -32+32=8+32 (把2x 看作一个整体)

x -16+16=4+16 2x =40

x=20 2x ÷2=40÷2

X=20

解方程优秀教案公开课设计精选7

教学目标

  知识与技能

  1.初步理解方程的解和解方程的含义。

  2.结合图例,理解根据等式的性质解方程的方法并进行检验。

  3.掌握解方程的格式和写法。

  过程与方法

  经历方程的解和解方程的认识过程,提高学生比较、分析的能力。

  情感态度与价值观

  在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验的学习习惯。

  教学重难点

  重点:理解方程的解和解方程的含义。

  难点:会检验方程的解。

  教学工具

  多媒体设备

  教学过程

  教学过程设计

  1、复习旧知,迁移导入

  (1)在上一节课的学习活动中,我们探究了哪些规律?

  学生回顾天平保持平衡的规律及等式保持不变的规律。

  (2)学习这些规律有什么用呢?今天我们解方程就需要充分利用等式的基本性质。

  2、合作探究,获取新知

  8.2.1教学教材第67页例1。

  (1)课件出示例1。

  从图中知道哪些信息?学生观察图片,交流图片数学信息。盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到χ+3=9

  学生自己先列出方程,然后指名回答。

  【板书:χ+3=9】

  如何解方程?要求盒子中一共有多少个皮球,也就是求等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

  (2)出示第67页分析图示,学生观察图示,交流想法。

  根据学生的汇报,板书解方程的过程:

  (3)为什么方程两边同时减去3,而不是别的数?

  引导学生得出结论:因为,两边减去3以后,左边刚好剩下一个χ,这样,右边就刚好是χ的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个χ即可。

  追问:χ=6带不带单位呢?让学生明白χ在这里只代表一个数值,因此不带单位。

  (4)如何检验χ=6是不是正确的答案?引导学生学习检验方程的解得方法,根据学生回答板书。

  【板书】:

  小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。利用等式的基本性质,可以帮助我们解方程。

  【注意】:在书写的过程中写的都是等式,而不是递等式。

  (5)认识、区别方程的解和解方程。

  ①使方程左右两边相等的未知知数的值,叫做方程的解,刚才,χ=6就是方程χ+3=9的解。而求方程的解的过程叫做解方程,刚才,想出办法求出χ+3=9的过程就是解方程。

  【板书】:使方程左右两边相等的未知知数的值,叫做方程的解

  求方程的解的过程叫做解方程。

  ②方程的解和解方程这两个概念说起来差不多,但它们的意义却大不相同,它们之间的有何不同?

  在小组内议一议,明确,方程的解是一个具体的值,而解方程是一个求解的过程。

  ③刚才我们把χ=6代入方程中,得到方程左边=右边,说明χ=6是方程χ+3=9的解。

  8.2.2教学教材第68页例2。

  (1)利用等式不变的规律,我们再来解一个方程。

  出示例2:解方程3χ=18

  怎样才能求到1个χ是多少呢?

  观察示意图,互相讨论,指名回答。

  在方程两边同时除以3,得到χ=6。

  让学生打开书68页,把例2中的解题过程补充完整。

  为什么两边同时除以的是3,而不是其它数呢?

  两边同时除以3,刚好把左边变成1个χ。

  使学生明确:在方程的两边同时除以一个不为0的数,方程左右两边仍然相等。

  (2)组织学生动手检验。

  (3)这是我们解方程常用的两种方法,想不想用它们来试一试呢?

  8.2.3教学教材第68页例3。

  (1)出示:解方程20-χ=9

  (2)指名学生板演,解出方程20-χ=9的解。

  (3)交流归纳解方程的方法。

  (4)小结:等式两边加上相同的式子,左右两边仍然相等。

  3、深化理解,拓展应用。

解方程优秀教案公开课设计精选8

一、目的要求

  使学生会用移项解方程,一元一次方程 利用等式的性质解方程。

  二、内容分析

  从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

  x=a的形式有如下特点:

  (1)没有分母;

  (2)没有括号;

  (3)未知项在方程的一边,已知项在方程的另一边;

  (4)没有同类项;

  (5)未知数的系数是1。

  在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

  根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

  解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

  用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

  如解方程 7x-2=6x-4

  时,用移项可直接得到 7x-6x=4+2。

  而用等式性质1,一般要用两次:

  (1)两边都减去6x;

  (2)两边都加上2。

  因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

  三、教学过程

  复习提问:

  (1)叙述等式的性质。

  (2)什么叫做方程的解?什么叫做解方程?

  新课讲解:

  1.利用等式性质1可以解一些方程。例如,方程 x-7=5

  的两边都加上7,就可以得到 x=5+7,

  x=12。

  又如方程 7x=6x-4

  的两边都减去6x,就可以得到 7x-6x=-4,

  x=-4。

  然后问学生如何用等式性质1解下列方程 3x-2=2x+1。

  2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。

解方程优秀教案公开课设计精选9

 教学目标

  1、会正确找出一元一次方程中存在的相等关系

  2、通过列方程解应用题,提高学生分析问题与解决问题的能力

  重点、难点、关键点

  重点:找出应用题中存在的相等关系

  难点:正确分析应用题中的条件

  关键:理解题意,并能正确找出应用题中的量与量之间的关系

  教学过程

  1、列一元一次方程解应用题题的步骤

  2、例题探究

  师:列一元一次方程解应用题的步骤有哪些?

  师:出示例题

  已知某电视机厂生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,应用题,某商场根据市场调查花9万元从该厂购进两种不同型号的电视机50台。请你分析一下是哪两种型号的.电视机?

  (教师引导,由学生自己解题过程)

  生:思考议论回答

  找等量关系

  设未知数

  列一元一次方程

  解方程

  写出答案

  生:讨论

  该问题需要分类讨论,有三种可能的情况

  可能购买的是甲、乙两种型号的电视机,也可能是乙丙或甲丙。

  8分

  20分

  A组:

  16个蓝球队进行循环比赛,每个队赢一场得2分,输一场得1分,比赛弃权得0分。某队参加了循环赛中的15场比赛,共得26分。这个队赢几场?输几场?

  B组:

  一列火车长250米,速度为60千米/时,一越野车其车速为90千米/时,当火车行驶时,越野车与火车同向而行,由列国车车尾追至车头,需要多长时间?

解方程优秀教案公开课设计精选10

 一、学习内容分析

  方程的意义选自人教版五年级上册,主要内容是方程的定义,属于数与代数领域。方程的意义是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。

  教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。

  二、学习者分析

  五年级的学生已经掌握了整数、小数、分数的认识,能够熟练计算整数、小数四则运算。学生对数与代数的知识和经验已经积累到相当的程度,需要对初一年级的数学知识和数学思想进行学习。但是方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。

  三、教学过程

  一、创设情境,引入课题

  1.课件呈现,认识天平:

  【出示天平】同学们,见过它吗?你们知道怎么用吗?

  【情境】

  【师生活动】学生回答,教师总结

  【归纳】左右平衡,也就说明左右相等了

  【追问】用一个什么式子表示

  2.体验感受,观察积累: 【问题】这里有一个梨和一个苹果,如果把他们分别放在天平两边的托盘里,猜想一下会有几种情况发生?

  【师生活动】学生个别回答,教师根据学生的回答板书:

  (1) 梨的质量大于一个苹果的质量天平向左倾斜;

  (2) 梨的质量等于一个苹果的质量天平保持平衡;

  (3) 梨的质量小于一个苹果的质量天平向右倾斜 【追问】因为不知道不确定质量所以结果就会出现不同的结果。现在我告诉你它们的质量:梨60克,苹果110克,此时天平会是什么状态?能用一个式子表示出这一状态吗?

  【师生活动】点名让学生个别回答,教师及时板书:60<110

  【教师评价】真好!数学语言表达就是简练。

  【追问】师:如果在天平左边梨质量是a

  克,用数学语言把你们认为天平的状态表达出来,写在本上。

  【师生活动】学生独立完成,教师巡视。

  【板书】60+a<110、60+a=110、60+a>110

  【追问】这几个式子各表示什么情况?

  【归纳】你看,简单的几个数学算式就表达了三种不同的情况,这就是数学语言的简约美。

  3.观察算式,揭示课题

  【追问】看看哪个式子表示相等?一起读出式子

  【追问】仔细观察这个算式,你发现这个算式和我们以前学过的有什么不一样的地方吗?

  【评价】真善于观察,今天我们就一起来学习这类问题 板书:简易方程

  二、自主探究,形成概念

  1.再举实例,铺垫孕伏

  【问题】还是这架天平,刚才你们发现了平衡,现在教师这里有一杯500克的果汁,和一罐125克的牛奶,如果把它们分别放在天平两边会出现什么情况?

  【师生活动】学生回答,教师补充。

  【追问】那么你能让这架天平平衡吗?也可以用数学算式表达。

  【学请预设】

  方案1:在右边再放3罐。

  【追问】可以吗?谁能说清楚?

  【板书】500=125×4或500=125+125+125+125

  【归纳】这是一种策略,改变右边的质量。受他的启发还有别的办法的吗? 方案2:刚才我还听有的同学说喝375克就行。大家说行吗?不过还真的有人喝了一口,不过这一口到底是多少我们不知道,怎么办? 【师生活动】教师引导学生用字母表示,用数学算式表示说明,写在本子上。

  【师生活动】教师巡视,抽有代表性的同学上来板书

  【板书】500-x<125, 500-x=””>125

  【追问】哪个式子表示了天平左右两边平衡了?

  500-x=125

  2.观察式子,归纳定义

  【问题】仔细观察下列式子,你发现了什么?

  (1)500=125×4或500=125+125+125+125

  (2)500-x=125

  (3)60+a=110

  【师生活动】学生回答,教师补充

  【归纳】含有未知数的等式叫做方程。【板书】

  3.分析定义,理解概念

  【问题】你认为判断方程需要几个条件?

  【师生活动】教师从方程的定义,引导学生回答:

  (1)表示相等的式子。

  (2)必须含有字母(未知数)。

  三、牛刀小试,巩固概念

  1.试一试,观察天平判断是否可以写出方程,说明理由。

  2.做一做:下面哪些是式子是方程?

  3.举一举:你会自己举出一些是方程的式子活例子

  (1)小红的年龄是x岁,老师比小明大30岁,今年老师的年龄是38岁。

  (2)逐个呈现3个足球,每个a元,共花180元。你能用方程表示吗?

  (1)小芳一个星期共跑了2.8km,每天跑s米。

  (2)一盒水果糖共a颗,平均分给25个小朋友,每人得3颗,正好分完。

  (3)小芳集邮共60张,小明集邮共48张。小芳给了小明x张后两人的集邮张数一样多。

  四、总结提升

  数学史:三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中记载了用一组方程解决实际问题的史料。直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。

  师:同学们,今天这节课上大家都积极的进行了思考,从中你学到了什么?还想知道些有关方程的哪些知识?

解方程优秀教案公开课设计精选11

教学目标:

1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。

2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。

4、培养学生规范书写和自觉检验的好习惯。

教学重点:

1、对等式的基本性质一的理解和运用。

2、掌握解形如x+a=b的方程的依据、步骤和书写格式。

3、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

教学难点:

1、掌握解形如x+a=b的方程的依据、步骤和书写格式。

2、较为熟练地运用形如x+a=b的方程解决简单的实际问题。

教学过程:

教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。

在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。

这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。

教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。

最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。

模式方法:观察——实验——讨论——交流——概括结论。

作业设计:自主练习1-3题。

讨论要点

1、教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。

2、教学时,要关注学生的算术思维向方程思维的转变。

3、在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。

4、教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。

活动总结

本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。

解方程优秀教案公开课设计精选12

教学目标:

  1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

  2、利用探索发现的等式的’性质,解决简单的方程。

  3、经历了从生活情境的方程模型的建构过程。

  4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

  教学重难点:

  重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

  难点:推导等式性质(一)。

  教学准备:

  一架天平、课件及班班通

  教学过程:

  一、创设情境,以情激趣

  师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?

  学生讨论纷纷。

  师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

  二、运用教具,探究新知

  (一)等式两边都加上一个数

  1、课件出示天平

  怎样看出天平平衡?如果天平平衡,则说明什么?

  学生回答。

  2、出示摆有砝码的天平

  操作、演示、讨论、板书:

  5=5 5+2=5+2

  x=10 x+5=15

  观察等式,发现什么规律?

  3、探索规律

  初次感知:等式两边都加上同一个数,等式仍然成立。

  再次感知:举例验证。

  (二)等式两边都减去同一个数

  观察课件,你又发现了什么?

  学生汇报师板书:

  x+2=10

  x+2-2=10-2

  x=8

  (三)运用规律,解方程

  三、巩固练习

  1、完成课本68页“练一练”第2题

  先说出数量关系,再列式解答。

  2、小组合作完成69页“练一练”第3题。

  完成后汇报,集体订正。

  四、课堂小结

  这节课你学到了什么?学生交流总结。

  板书设计:

  解方程(一)

  x+2=10

  解:x+2-2=10-2(方程两边都减去2)

  x=8

解方程优秀教案公开课设计精选13

教学目标:

1、学会利用等式性质1解方程;

2、理解移项的概念;

3、学会移项,数学教案-解方程。

教学重点:利用等式性质1解方程及移项法则;

教学难点:利用等式性质1来解释方程的变形。

教学准备:

1、投影仪、投影片。

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

教学过程:

(一)引入新课:

1、上节课的想一想引入新课:等式和方程之间有什么区别和联系?

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点?

①5x+6=9x②3x+5③7+5×3=22④4x+3y=2

由学生小议后回答:①、④是方程。

分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

①2x+3=11

②y2=16

③x+y=2

④3y-1=4y

6、什么叫方程的解?怎样解方程?

关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

(二)讲解新课:

1、等式性质1:

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

强调关键词:”两边”、”都”、”同”、”等式”。

2、利用等式性质1解方程:

x+2=5

分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

注意:解题格式。

例1解方程5x=7+4x

分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。

解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

观察前面两个方程的求解过程:

x+2=55x=7+4x

x=5-25x-4x=7

思考:

⑴把+2从方程的一边移到另一边,发生了什么变化?

⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

3、移项:

从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。

注意:

①移项要变号;

②移项的实质:利用等式性质1对方程进行变形。

例2解方程:3x+4=2x+7

解:移项,得3x-2x=7-4,合并同类项,得x=3。

∴x=3是原方程的解。

归纳:

①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;

③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

(三)课堂小结:

①什么是一次方程,一元一次方程?

②等式性质1(找关键词);

③移项法则;

④应用等式性质1的注意点(例2归纳的三条)。

(四)布置作业:见作业本。

解方程优秀教案公开课设计精选14

教学内容:

  教科书58页例1。

  教学目标:

  1、结合图例,根据等式不变的性质,学会解简易方程。

  2、掌握解方程的书写格式,并能用代入法进行检验。

  3、提高学生的分析、理解能力,同时渗透函数的思想。

  教学重点:

  掌握解方程的方法和书写格式。

  教学重点:

  掌握解方程的方法。

  教具准备:

  可见、平台

  教学过程:

  一、复习。

  1、提问:什么是方程?

  2、判断下面各式哪些是方程?

  略

  3、后面括号中哪个x的值是方程的解?

  (1)x+42=98(x=57,x=135)

  (2)5.2-x=0.7(x=4.5,x=8.8)

  4、等式的性质是什么?(方程两边同时加减或乘除同一个数(0除外),左右两边仍然相等)

  5、导入:今天,我们就利用等式的性质来解方程。

  板书课题:解方程

  二、新课学习。

  1、出示例1的图

  (1)问:你们猜盒子里装的是什么?(皮球)问:从图中你获取了哪些信息?

  (盒子里有x个皮球和外面3个皮球等于9个皮球)

  (2)请学生根据关系列出式子。

  板书:x+3=9

  (3)问:怎样解这个方程呢?(出示课件)

  (4)师:我们可以用天平保持平衡的道理来帮助解方程。

  (5)看课件演示

  问:要使天平左边只剩下“x”而还能保持平衡,该怎么办呢?

  (6)学生思考后回答。

  (7)演示课件

  教师一边演示一边在黑板写出:x+3-3=9-3

  (8)师生小结:方程两边同时减去同一个数(3)

  (9)问:为什么要减3,减2可以吗?学生回答

  (10)天平两边同时减去同一个数,天平两边还平衡吗?

  出示课件,学生回答:平衡

  师板书:左右两边仍然相等

  (11)那么天平左边剩下x右边剩下6个球,x=6是不是正确的答案呢?我们来验算一下(师在黑板板演验算过程)

  2、小结:今天,我们利用了什么知识来解方程?(等式的性质)在解方程

  的过程中我们还要注意些什么呢?(我们要注意书写格式,等号要对齐,注意:x=6表示一个数值,后面不能带单位,解方程要用代入法检验一下方程的解是否正确。)

  3、质疑:看书58页,还有什么不明白的地方?

  (通过练习测试学生的’掌握程度)

  三、练习。

  1、出示课件:第59页做一做的第一题中的第一个图:列方程解答并验算

  (1)学生独立完成,师巡视。

  (2)指名学生板演,并说说如何解答的?

  2、加法会解了,那么减法又怎样做呢?我们来挑战一下。

  (1)课件出示:x-2=15小组讨论完成

  (2)投影学生的计算结果,让学生说出解题思路。

  3、我最棒

  略

  4、找朋友

  略

  5、拓展

  x-0.5=3+1.9

  四、作业

  数学课本63页练习十一的第5题中的前四题。

解方程优秀教案公开课设计精选15

教学内容:数学书P58-P59及“做一做”,练习十一第5-7题。

教学目标:

1、 结合具体图例,根据等式不变的规律会解方程。

2、 掌握解方程的格式和写法。

3、 进一步提高学生分析、迁移的能力。

教学重难点:掌握解方程的方法。

教学过程:

一、导入新课

二、新知学习

(一) 教学例1

出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

化简,即得: x=6

这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

板书:方程左边=x+3

=6+3

=9

=方程右边

所以, x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二) 教学例2

利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

展示、订正。

通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

(三) 反馈练习

1、 完成“做一做”的第1题。

2、 试着解方程:x-2.4=6 x÷9=0.7 (强调验算)

三、课堂小结。

这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

四、作业:练习十一5—7题。

解方程教学反思

在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。

1、在具体情境中理解算理,经历代数的过程。

本节课属于典型的计算课,所以算理与算法是二条主线,今天的算法主要是突破学生原有的认知,能够利用天平的原理来解方程,所以理解算理,让学生体验到解方程只要使天平的一边剩下一个未知数,但要在这个变化中必须使天平保持平衡,可以通过在天平的左右二边同时减去相同的`数是本节课的重点。我通过创设情境,让学生来领悟算理,突显出本节课的重点。

2、在直观操作中掌握方法,发展数学素养。

在本节课中,通过充分的直观,利用学生熟悉的素材,力图把方程建构于天平之中,在学生的头脑中建立深刻的模像。同时,在让学生用自己的生活,用自己的操作解释、验证中发展学生的数学素养。

3、困惑:纵观学生的起点,他们已经具有丰富的生活经验与知识背景来解简单的方程,所以在教学中运用“逆运算”来解方程对于采用天平的原理来解方程造成了相当的,部分学生虽然对于运用天平原理来解方程已经十分理解,但他们还是不愿意用这种方法,主要的原因是他们体验不到这种方法的优越性,所以如何在本节课中让学生体验到天平原理的优越性,从而自愿的采用这种方法,没有好的策略?

以上是解方程优秀教案公开课设计精选的所有内容,希望读者能够从中获得一些有益的信息和启示。谢谢阅读!

本内容由zhenzhen收集整理,不代表本站观点,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:https://wenku.puchedu.cn/69932.html

(0)
zhenzhenzhenzhen

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注