材料力学读书报告精选范文 材料力学的学习实验心得体会

通过撰写材料力学读书报告,学生可以更深入地理解材料力学的基本概念、原理和方法。在阅读和整理资料的过程中,学生需要思考和理解材料力学中的知识点,从而加深对材料力学知识的理解和掌握。以下是材料力学读书报告精选范文和材料力学的学习实验心得体会,可供参考。

材料力学读书报告1

《材料力学》这门课程是研究材料在各种外力作用下产生的应变力强度、刚度、稳定和导致各种材料破坏的极限。《材料力学》是设计工业设施必须掌握的知识。与理论力学、结构力学并称三大力学。

《材料力学》是一门技术基础课程,是衔接基础课与专业基础课的桥梁课程。《材料力学》是理论研究和实验并重的一门学科。是固体力学中的一个重要的分支学科,是研究可变形固体受到处荷载力或温度变化等因素的影响而发生力学响应的一门科学,是研究构件在受载过程中的强度、刚度和稳定性问题的一门学科。它是门理论研究与工程实践相结合的非常密切的一门学科。

材料力学的基本任务是在满足强度、刚度和稳定性的安全要求下以最经济的代价。为构件确定合理的形状和尺寸选择适宜的材料,为构件设计提供必要的理论基础和计算方法解决结构设计安全可靠与经济合理的矛盾。

在人们运用材料进行建筑,工业生产的过程中,需要对材料的实际随能力和内部变化进行研究这就催生了材料力学。在材料力学中,将研究对象被看作均匀,连续且具有各同性的线性弹性物体,但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际方法对材料进行实验比较,种材料的相关数据。我们一般通过假设对物体进行描述,这样有利于我们通过数学计算出相关的数据,有连续性假设,均匀性假设。各向同性假设及小变型假设等。

在材料力学中,物体由于外因而变化时,在物体内部各部分之间产生相互作用的内力以低抗这种外因的作用,并力图使物体从变形的位置回复到变形前的位置,在所考察的截面某一点单位面积上的内力称为应力。既受力物体内某点某微截面上的内力的分布集度,应变指构件等物体内任一点因各种外力作用引起的形状和尺寸的相对改变(变形)。当撤除外力时固体能恢复其变形的性能称为弹性,当撤除外力时固体能残留下来变形的性能称为塑性。物件在外力作用下抵抗破坏的能力称强度。刚度是指构件在外力作用下抵抗变形的能力。

研究内力和应力一般用截面法,目的是为了求得物体内部各部分之间的相互作用力。轴向拉伸(压缩)的计算公式为 ??fn。?为横截面的应力。正应为 和轴力fn同a 号。即拉应力为正,压应力为负。

原理:力作用于杆端的分布方式的不同,只影响杆端局部范围的应力分布影响区的轴向范围的离杆端1~2个杆的横向尺寸。

《材料力学》在建设工程中有着之泛的应用。在桥梁,铁路,建筑,火箭等行业中起到很重要的作用。如武汉长江大桥的设计,桥墩主要承受来自两侧浮桥本身的重力,桥面上生物的重力,钢索主要受到拉力一方面是桥身以及桥面物体它们的自重。另一方面是钢索自重,在这两个比较大的力的作用下钢索处于被拉伸状态。

《材料力学》研究的问题是构件的强度、刚度和稳定性;所研究的构件主要是杆件、几种变形形式包括拉伸压缩、剪切、弯曲和扭转这几种基本变形形式。研究《材料力学》就是解决在工程中研究外力作用下,如何保证构件正常的工作的问题。因此,材料力学是我们在设计建造工程中起着相关重要的作用。

材料力学读书报告2

引言:《材料力学》这门课程是是一门技术基础课程,是衔接基础课与专业基础课的桥梁课程;是研究材料在各种外力作用下产生的应变力强度、刚度、稳定和导致各种材料破坏的极限的一门课程。

一、主要内容

   本书共分为九章和五个附录来研究可变形固体受到处荷载力或温度变化等因素的影响而发生力学响应和研究构件在受载过程中的强度、刚度和稳定性问题。

第1章主要介绍了材料力学发展概述和任务;详细说明了连续性假设、均匀性假设和各向性假设三种基本假设还有杆件变形有轴向拉伸或轴向压缩、剪切、扭转、弯曲四种基本形式。

第2章先解释了轴向拉伸或轴向压缩的概念和内力、截面法、轴力及轴力图的概念,并介绍了通过截面法求出轴力的方法;讲解如何运用胡克定律计算拉(压)杆的变形和利用材料的强度条件正面计算材料的安全因数和许用应力反面来计算设计的可靠性;本章还详细的讲解了材料子啊拉伸和压缩是的力学性能帮做出相应的δ-ε曲线。

第3章主要讲解扭转,先通过薄壁圆筒的扭转说明了剪切胡可定律;接着讲解了转动轴的外力偶距·扭转并介绍如何画扭转图;在讲解等直杆扭转时的应力·强度条件和变形·刚度条件如何利用他们求解杆件是否合格和求杆件的规格;本章还讲解了等直非圆杆自由扭转时的应力和形变。

第4章主要讲解弯曲应力。介绍了简支梁、外伸梁、悬臂梁三种梁的计算简图并讲解了在单个力和多个力下如何做出梁的剪力图和弯矩图和在几种在载荷下的剪力图和弯矩图的特征;在讲解梁横截面正应力·强度条件和切应力·切应力强度条件如何利用他们求解梁的正应力、规格、许可载荷和校准强度;最后还介绍了梁的合理设计。

第5章主要讲解梁弯曲时的位移。讲解通过曲率与弯矩的物理关系求出梁的挠曲线近似微分方程,如何利用叠加原理计算梁的挠度和转角;讲解了梁的刚度校核和通过增大梁的弯曲刚度、调整跨长和改变结构两种提高梁的措施;最后还介绍了梁内的弯曲应变能。

第6章主要介绍如何解决简单的超静定问题。首先阐述了超静定问题及其解法;接着讲解如何运用变形的几何相容条件、力-变形间的物理关系和静力学的平衡条件解决拉压超静定问题和扭转超静定问题,并讲解了装配应力和温度应力;最后讲解了简单超静定梁的解法以及制作沉陷和温度变化对超静定梁的影响。

附录1主要讲解洁面的几何性质。先介绍了如何确定截面的静距和形心位置;然后讲解了如何计算极惯性矩、惯性矩、惯性积;再讲解了惯性矩和惯性积的平移公式以及组合截面的惯性矩和惯性积;最后讲解了惯性矩和惯性积的转轴公式以及截面的主惯性轴和惯性距。

2、生活中的应用

    在建设工程中有着之泛的应用。在桥梁,铁路,建筑,火箭等行业中起到很重要的作用。如武汉长江大桥的设计,桥墩主要承受来自两侧浮桥本身的重力,桥面上生物的重力,钢索主要受到拉力一方面是桥身以及桥面物体它们的自重。另一方面是钢索自重,在这两个比较大的力的作用下钢索处于被拉伸状态。

    在生活中我们用的很多包装袋上都会剪出一个小口,其原理就用到了材料力学的应力集中,使里面的食品便于撕开

利用材料力学中卸载与在加载规律得出冷作硬化现象,工程中常利用其原理以提高材料的承载能力,例如建筑用的钢筋与起重的链条,但冷作硬化使材料变硬、变脆,是加工发生困难,且易产生裂纹,这时应采用退火处理,部分或全部地材料的冷作硬化效应。

3、心得体会

说起材料力学大多数人都认为它很枯燥、很难,但是材料力学是理论与实际的结合,材料力学是生活中的应用。

材料力学在生活中的应用十分广泛。大到机械中的各种机器,建筑中的各个结构,小到生活中的塑料食品包装,很小的日用品各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作,所以材料力学就显得尤为重要。

学习材料力学并不仅仅是学习几个枯燥的公式和几种材料的性质,而是学习一种方法,一种看待事物分析问题的方法。这才是它给予我们真正有价值的东西。

材料力学读书报告3

材料力学作为力学的一个分支,在工程学中具有重要的地位。通过学习材料力学,我们能够深入了解材料的物理、化学、机械性能,并且在实际工程应用中能够更好地控制和优化材料性能。在这里,我将分享我对于学习材料力学的心得体会。

第二段:认识基础

在学习材料力学的过程中,我们需要对基础知识有一个清晰地认识。学习材料变形、破坏、疲劳等知识时,我们需要掌握材料的力学性能、应变、应力等概念。深入了解基础知识,可以让我们更好地理解后续的学习内容。

第三段:实践运用

学习材料力学并不仅仅是为了掌握理论知识,更是为了实践运用。在实际工作中,我们需要考虑诸如材料强度、耐久性、腐蚀性等问题。在这些问题上,材料力学知识提供了重要的帮助。例如,我们可以通过学习材料疲劳知识来设计出更加牢固耐久的结构。

第四段:启示思考

通过学习材料力学,我们可以启示自己思考一些问题。例如,我们可以思考在工程中选择什么样的材料才能更好地满足需求;我们还可以思考在工程中材料的运用和应用。这些思考能够帮助我们更好地运用材料力学知识,并且创造出更加优秀的工程产品。

第五段:总结

总的来说,学习材料力学的过程是一个富有挑战性和收获的过程。通过深入了解材料力学知识和应用,在实际工程中解决问题与创新方案上会更加突出。而这也将会是一种非常有益的经历和经验,这种经验和经历随着我们的年龄增长会变得更加宝贵。我们需要持续地深挖这种精神,不断地探寻新的未知领域,以此来提高我们的职业技能和专业素养。

材料力学读书报告4

提起材料力学,那是一件头疼的事。也许你不能想象4个小时没做出一道题是一种什么感觉。提起材料力学,那是一件有趣的事。因为你能够通过错误发现思维竟有如此多的漏洞。

材料力学,那是人类社会几百年来的结晶。它很好的将神秘的理论力学与实际工程 联结在一起。可以这样说,没有材料力学的发展,就没有当今的人类社会。

同样,学习材料力学也是一个过程,是一个从理论到实践的过程。理论力学过于强调字

母与计算的效果,而忽略了实际的需要。材料力学则恰到好处地填补了这个漏洞。

材料力学在生活中的应用十分广泛。大到机械中的各种机器,建筑中的各个结构,小到生活中的塑料食品包装,很小的日用品各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作,所以材料力学就显得尤为重要。

在解决材料力学问题的过程中,每一个环节都很重要。比如初始的审题,模型的理想化,计算方法及计算结果、答案分析、得出结论等等。无论在哪个环节出现问题,都会导致错误结论的产生。对于现在来说,这也许只是丢点分数,但是当以后我们步入到工程实际中,这些错误将是致命的。且不说计算错误,就是少保留一位小数而使得国家上万元的投资付诸东流的事例也是存在的。所以,学习材料力学一定要培养认真仔细的习惯,马虎不得。只有养成这样良好的习惯,将来才能更好的为人民、为国家服务。

今后我们步入社会,也许从事的专业与机械无关。但是我们在学习材料力学的过程中所培养出来的素质是其他学科不能给予的,即能够在把握整体的同时关系局部,能够将所有的事物有条理的串接在一起,能够在任何时刻都清晰冷静的找出问题关键并付之妥善的解决方法,能够从各种现象中看出本质,能够灵活地将理论中的东西贯穿于实际工作中……。所以,学习材料力学并不仅仅是学习几个枯燥的公式和几种材料的性质,而是学习一种方法,一种看待事物分析问题的方法。这才是它给予我们真正有价值的东西!

材料力学读书报告5

引言 为了深刻认识三大力学之间的关系先要对各个力学的基本意义、研究方向、研究任务、发展简史及现在工程应用当中的不可忽视的作用进行进一步研究

正文

一,三大力学的基本定义:

理论力学:理论力学是机械运动及物体间相互机械作用的一般规律的学科,也称经典力学。是力学的一部分,也是大部分工程技术科学理论力学的基础。其理论基础是牛顿运动定律,故又称牛顿力学。20世纪初建立起来的量子力学和相对论,表明牛顿力学所表述的是相对论力学在物体速度远小于光速时的极限情况,也是量子力学在量子数为无限大时的极限情况。对于速度远小于光速的宏观物体的运动,包括超音速喷气飞机及宇宙飞行器的运动,都可以用经典力学进行分析。

材料力学:研究材料在各种外力作用下产生的应变、应力、强度、刚度和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。学习材料力学一般要求学生先修高等数学和理论力学。

结构力学:结构力学是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如飞机机身和机翼、桥梁、屋架和承力墙等。

二,研究方向:

理论力学:理论力学主要研究刚体系的平衡条件和运动的基本规律。它的研究对象是刚体,与物体形变无关,主要是单纯的力与力,力与物体之间的关系,是承上启下的一门力学基础课。同时理论力学是一门理论性较强的技术基础课,随着科学技术的发展,工程专业中许多课程均以理论力学为基础。

理论力学遵循正确的认识规律进行研究和发展。人们通过观察生活和生产实践中的各种现象,进行多次的科学试验,经过分析、综合和归纳,总结出力学的最基本的理论规律。

材料力学:材料力学主要是研究单个材料的力学性能,形变与力的关系。它主要研究单根杆件的强度、刚度、和稳定性。

结构力学:结构力学的研究对象主要是杆件结构。三,研究任务

理论力学:理论力学是研究物体机械运动一般规律的科学。理论力学所研究的对象(即所采用的力学模型)为质点或质点系时,称为质点力学或质点系力学;如为刚体时,称为刚体力学。因所研究问题的不同,理论力学又可分为静力学、运动学和动力学三部分。

静力学研究物体在力作用下处于平衡的规律。运动学研究物体运动的几何性质。动力学研究物体在力作用下的运动规律。

理论力学的重要分支有振动理论、运动稳定性理论、陀螺仪理论、变质量体力学、刚体系统动力学、自动控制理论等。这些内容,有时总称为一般力学。

理论力学与许多技术学科直接有关,如水力学、材料力学、结构力学、机器与机构理论、外弹道学、飞行力学等,是这些学科的基础。

材料力学:研究材料在外力作用下破坏的规律、为受力构件提供强度,刚度和稳定性计算的理论基础条件、解决结构设计安全可靠与经济合理的矛盾。材料力学基本假设1 连续性假设——组成固体的物质内毫无空隙地充满了固体的体积。2均匀性假设--在固体内任何部分力学性能完全一样3 各向同性假设——材料沿各个不同方向力学性能均相同4 小变形假设——变形远小于构件尺寸,便于用变形前的尺寸和几何形状进行计算研究内容在人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。运用材料力学知识可以分析材料的强度、刚度和稳定性。材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化机构设计,以达到降低成本、减轻重量等目的。在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性物体。但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际方法对材料进行实验比较。材料在机构中会受到拉伸、压缩、弯曲、扭转及其组合等变形。根据胡克定律,在弹性限度内,物体的应力与应变成线性关系。

结构力学:研究在工程结构在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关系,很多工程结构就是受到天然结构的启发而创制出来的。结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻.减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度大、能耗低。从他们的研究方向和研究对象容易看出 材料力学主要是从理论力学的静力学发展而来,因为刚体是不会变形的,材料力学就是研究物体在发生形变以后的一些问题,比如说刚度,强度,稳定性等等。理论力学无法解答超静定问题,但是在材料力学中可以根据变形协调方程或者一些边界约束条件可以解答超静定问题,这是材料力学比理论力学更丰富的地方。而且材料力学在解释实际生活中的问题时时把问题工程化。另外动载荷和疲劳失效问题材料力学中也有涉及但不是重点。而理论力学和材料力学不能解决的问题结构力学有效的解决了。结构力学就更加深化了,研究的是各种杆件的组合结构,扩展到了空间,各加复杂化,实际化。

四,发展简史

理论力学:力学是最古老的科学之一,它是社会生产和科学实践长期发展的结果。随着古代建筑技术的发展,简单机械的应用,静力学逐渐发展完善。公元前5~前4世纪,在中国的《墨经》中已有关于水力学的叙述。古希腊的数学家阿基米德(公元前3世纪)提出了杠杆平衡公式(限于平行力)及重心公式,奠定了静力学基础。荷兰学者s.斯蒂文(16世纪)解决了非平行力情况下的杠杆问题,发现了力的平行四边形法则。他还提出了著名的“黄金定则”,是虚位移原理的萌芽。这一原理的现代提法是瑞士学者约翰第一·伯努利于1717年提出的。

动力学的科学基础以及整个力学的奠定时期在17世纪。意大利物理学家伽利略创立了惯性定律,首次提出了加速度的概念。他应用了运动的合成原理,与静力学中力的平行四边形法则相对应,并把力学建立在科学实验的基础上。英国物理学家牛顿推广了力的概念,引入了质量的概念,总结出了机械运动的三定律(1687 年),奠定了经典力学的基础。他发现的万有引力定律,是天体力学的基础。以牛顿和德国人g.w.莱布尼兹所发明的微积分为工具,瑞士数学家l.欧拉系统地研究了质点动力学问题,并奠定了刚体力学的基础。

材料力学:<1> 独立学科的标志及杆件的拉伸问题

通常认为,意大利科学家伽利略《关于力学和局部运动的两门新科学的对话和数学证明》—书的发表(1638年)是材料力学开始形成一门独立学科的标志。在该书中这位科学巨匠尝试用科学的解析方法确定构件的尺寸,讨论的第—问题是直杆轴向拉伸问题,得到承载能力与横截面积成正比而与长度无关的正确结论。

<2> 梁的弯曲问题

在《关于力学和局部运动的两门新科学的对话和数学证明》一书中,伽利略讨论的第二个问题是梁的弯曲强度问题。按今天的科学结论,当时作者所得的弯曲正应力公式并不完全正确,但该公式已反映了矩形截面梁的承载能力和bh2(b、h分别为截面的宽度和高度)成正比,圆截面梁承载能力和d3(d为横截面直径)成正比的正确结论。对于空心梁承载能力的叙述则更为精彩,他说,空心梁“能大大提高强度而无需增加重量,所以在技术上得到广泛的应用。在自然界就更为普遍了。这样的例子在鸟类的骨骼和各种芦苇中可以看到,它们既轻巧,而又对弯曲和断裂具有相当高的抵抗能力”。梁在弯曲变形时,沿长度方向的纤维中有一层既不伸长也不缩短者,称为中性层。早在1620年荷兰物理学家和力学家比克门发现,梁弯曲时一侧纤维伸长、另一侧纤维缩短,必然存在既不伸长也不缩短的中性层。英国科学家胡克(hooke r)于1678年也阐述了同样的现象,但他们都没有述及中性层位置问题。首先论及中性层位置的是法国科学家马略特。其后莱布尼兹、雅科布?伯努利、伐里农等人及其他学者的研究工作尽管都涉及了这一问题,但都没有得出正确的结论。18世纪初,法国学者帕伦对这一问题的研究取得了突破性的进展。直到1826年纳维才在他的材料力学讲义中给出正确的结论:中性层过横截面的形心。平截面假设是材料力学计算理论的重要基础之一。雅科布?伯努利于1695年提出了梁弯曲的平截面假设,由此可以证明梁(中 性层)的曲率和弯矩成正比。此外他还得到了梁的挠曲线微分方程。但由于没有采用曲率的简化式,且当时尚无弹性模量的定量结果,致使该理论并没有得到广泛的应用。梁的变形计算问题,早在13世纪纳莫尔已经提出,此后雅科布?伯努利、丹尼尔?伯努利、欧拉等人都曾经研究过这一问题。1826年纳维在他材料力学讲义中得出了正确的挠曲线微分方程式及梁的弯曲强度的正确公式,为梁的变形与强度计算问题奠定了正确的理论基础。

俄罗斯铁路工程师儒拉夫斯基于1855年得到横力弯曲时的切应力公式。30年后,他的同胞别斯帕罗夫开始使用弯矩图,被认为是历史上第一个使用弯矩图的人。

<3> 关于杆件扭转问题

对于圆轴扭转问题,可以认为法国科学家库仑分别于1777年和1784年发表的两篇论文是具有开创意义的工作。其后英国科学家杨在1807年得到了横截面上切应力与到轴心距离成正比的正确结论。此后,法国力学家圣维南于19世纪中叶运用弹性力学方法奠定了柱体扭转理论研究的基础,因而学术界习惯将柱体扭转问题称为圣维南问题。闭口薄壁杆件的切应力公式是布莱特于1896年得到的;而铁摩辛柯、符拉索夫和乌曼斯基则对求解开口薄壁杆件扭转问题做出了杰出的贡献。

<4> 关于压杆稳定问题

压杆在工程实际中到处可见,第11章已经述及压杆的失稳现象。早在文艺复兴时期,伟大的艺术家、科学家和工程师达?芬奇对压杆做了一些开拓性的研究工作。荷兰物理学教授穆申布罗克于1729年通过对于木杆的受压实验,得出“压曲载荷与杆长的平方成反比的重要结论”。众所周知,细长杆压曲载荷公式是数学家欧拉首先导出的。他在1744年出版的变分法专著中,曾得到细长压杆失稳后弹性曲线的精确描述及压曲载荷的计算公式。1757年他又出版了《关于柱的承载能力》的论著(工程中习惯将压杆称为柱),纠正了在1744年专著中关于矩形截面抗弯刚度计算中的错误。而大家熟知的两端铰支压杆压曲载荷公式是拉格朗日在欧拉近似微分方程的基础上于1770年左右得到的。1807年英国自然哲学教授杨、1826年纳维先后指出欧拉公式只适用于细长压杆。1846年拉马尔具体讨论了欧拉公式的适用范围,并提出超出此范围的压杆要依*实验研究方可解决问题的正确见解。

材料力学读书报告6

到现在,已经学习了一学期的力学了,对于我自己,经过这一学期的学习,我发现自己收获不小,坦诚的说,工程力学我学的不怎样,算是一般的,所以对于学习工程力学的方法不敢妄下评语。只是我个人觉得学好工程力学应该是持之以恒,多思考,我想这些老掉牙的学习方法大家都知道,但如果你真的能做到,那么你什么知识都能学好。我学习理科知识的能力并不强,有些别人只需花五分钟就能解决的问题,我可能要花上十分钟还理解不了。但我一直相信这并不是我学不好的原因!我觉得自己最大的弱点就是畏难,害怕做难题!这也许才是真正导致我工程力学学不好的原因。就像刚开始,上课听不懂,到了下课,空余时间,因为觉得难,所以也就不想碰它,这样恶性循环下去,小而言之,导致后面听不懂;大而言之,就是信心的缺乏,再没信心能将这门课学好!

就自身而言,要想学好这门课,最主要的就是要克服我的畏难心理,否则我永远得不到提高。凡事都是说起来容易做起来难,我不可能一下子就能完全克服我的毛病,总得有个变化的过程,但我会尽自己最大的努力缩短这个过程的!以后的日子,我相信我会学好,也能学好工程力学、材料力学,因为我现在就处在那种变化之中!同时我想我们应该对大学有一个清晰的认识,如果你认为它是一个象牙塔,那么他就是,如果你认为他是练狱,他也是。大学自在心中,看你怎么对待他,愿大家共勉之。

不得不承认顾老师讲的课确实很好,在他的课堂上,我们除了学到力学知识外,还学到不少做人的道理!听顾老师的课是一种享受。虽然工程力学是一门很复杂很深奥的科学,但在顾老师以交流、谈心为方式的授课模式下,让我接受的很坦然,很轻松。完全没有对复杂模型、对冗长数据的恐惧。反而能够更好的扩展自己狭窄、有限的知识面;能够更好的去认知社会,去剖析自己,以自我改善与提高。我想这才是我们学习的更高层次的目的。

刚接触力学时就很自然的和物理联系到了一起,还以为是物理的一个分支,然而自己是大错特错了,没想到它是如此的丰富。我们到目前已经学习了静力学和材料力学,将来还会学习结构力学、流体力学等工程力学。其中静力学的内容涉及面较广,和我们生活的方方面面都有所联系,它是研究物体的机械运动及物体间相互机械作用的一般规律的学科,感觉和我们学习土木工程牵涉少,不是太具体,可能是学习的不够深入的缘故吧;材料力学研究的是材料在各种外力作用下产生的应变、应力、强度、刚度和导致各种材料破坏的极限问题,它是我们很重要的专业课,其中所涉猎的问题在我们将来的工作中都可能遇到,而且这部分顾老师给我们提供了大量的工程实际问题,可以说这是我们所久违的了,学习时也没有了以前的那种空洞感。

就如顾老师所说的学习重要的是学习方法,而不是死背公式。我想如果大家能够从定义出发,去理解并掌握解决问题的的思路,并且能以自己的方式去转化与扩展,那么很多问题我们都可以很自如的去解决了。

对于材料力学,经过了一学期的接触,我觉得真的是理解重于一切,顾老师的教学是与课本不一致的,在我的理解之中,顾老师的讲课顺序是按照我们思维的顺序发展开始的,接下去的,但是课本是根据定义等一系列的原理到应用的顺序的,总是会在一章节的开始赫然的摆出很多陌生的定义和公式,但是这么多公式和定义为什么而出现我们却一点也不知道,顾老师的讲课就不同了,他会在讲到某个内容的时候在引出所需要的一些特殊字母以及关于这个特殊字母的定义和公式,我觉得这个方式比较适合我们大家去接受。

顾老师,在这半个学期的学习中您教会了我很多,在此深表感谢。在这里我还想给您的课提一些小小的建议:

(1)用的课本我觉得缺少了一些例题,而且对我们脑子中力学模型的构建没有太大的启发;

(2)由于时间太紧,您上课太过于赶时间,有些细节地方讲的简单了点,给我们课余的复习带来了一些不便,希望您能向学校建议让理论力学和材料学分开上,都上一个学期;

(3)关于作业,我觉得应该先选择具有代表性的必做题,然后再规定其他题应该完成的量。做一定数量的习题是学好工程力学所必须的。许多概念和公式可以通过做习题来巩固、掌握、加深理解,更重要的是通过做题可以锻炼和提高分析和解决实际问题的能力。因此,在工程力学的学习工程中要勤思考,多做题。

这仅是学生的一些愚见,恳请老师参详。

材料力学读书报告7

一、引言

材料力学是工程学科中一门重要的专业基础课程,它主要研究材料在各种外力作用下的力学行为,涉及到材料的强度、刚度、稳定性和可靠性等方面。通过阅读材料力学相关的学术文献和教材,我对材料力学有了更深入的理解和认识。本报告将重点介绍材料力学的基本概念、原理和方法,以及其在工程实践中的应用和意义。

二、材料力学的基本概念和原理

材料力学主要研究材料的力学行为,涉及到材料的变形、断裂、疲劳等方面的研究。在材料力学中,有一些基本的概念和原理需要掌握,如应力和应变、弹性模量、泊松比、剪切模量等。这些概念和原理是描述材料力学行为的基础,对于理解和分析材料的力学性能至关重要。

三、材料力学的应用和意义

材料力学在工程实践中具有广泛的应用和意义。在建筑领域,材料力学可以帮助工程师设计出更加安全、经济的建筑结构。在机械工程领域,材料力学可以帮助工程师设计出更加可靠、高效的机械设备。此外,材料力学在航空航天、船舶、汽车等领域也有着广泛的应用。通过掌握材料力学的基本概念和原理,工程师可以更好地理解和分析材料的力学行为,从而设计出更加优秀、可靠的产品。

四、总结

材料力学是一门重要的工程学科,它在工程实践中具有广泛的应用和意义。通过阅读材料力学相关的学术文献和教材,我对材料力学的基本概念、原理和方法有了更深入的理解和认识。未来,我将更加注重将材料力学的理论应用于实践中,以提高产品的可靠性和安全性。同时,我也将不断学习和探索新的材料和技术,以适应不断发展的工程领域的需求。

本内容由qingfan收集整理,不代表本站观点,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:https://wenku.puchedu.cn/138179.html

(0)
qingfanqingfan

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注