相反数指两个数的数值相等,但符号相反的数。在数学中,相反数是非常重要的概念,它们在各种数学运算中都有广泛的应用。本文将相反数的知识点总结,以便读者更好地了解和掌握这个重要的数学概念。
![相反数的知识点总结 初一数学必考知识点相反数](https://wimg.puchedu.cn/uploads/2023/06/image-96.png)
相反数的知识点总结1
(互为)相反数的代数意义
1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数
4、一个实数x的相反数y,实际上是R到R的一个映射:y=f(x)=-x。
从二维空间看,这个映射可以看作是旋转(180度)映射(中心对称);
这个映射也可以看作是翻折(180度)映射(轴对称);
x=0,就是这个映射下的不动点。
(互为)相反数的几何意义
1、相反数的几何意义:在数轴上,到原点距离相等的两个点表示的两个数是互为相反数.
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称。
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”;
希望同学们注意“互为相反数”和“相反数”在概念上的区别。
相反数规则
正数的相反数是负数,负数的相反数就是正数。
0的相反数是0,也就是0的相反数是它本身。同时,相反数是它本身的数只有0。无理数也有相反数。
互为相反数的两个数的商为-1(0除外)。
实数a相反数的相反数,就是a本身。
a-b和b-a互为相反数。
负数和0的绝对值是它的相反数。
虚数没有相反数。
相反数不具有传递性,即如果x是y的相反数,y是z的相反数,那么x不一定是z的相反数(除非x=y=z=0)。
如果您还不明白的话,请看下面几个例子:
非负数的相反数:0→01→-1;2→-2;3→-3;4→-4
非正数的相反数:0→0-1→1;-2→2;-3→3……………
无理数的相反数:π→-π
注解:
1、非负数又称非负有理数,习惯上我们将“正有理数和零”称作非负有理数。
2、非正数又称非正有理数,习惯上我们将“负有理数和零”称为非正有理数。
3、无理数是实数的一种,习惯上将无限不循环小数叫做无理数。
相反数的知识点总结2
相反数
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0?a+b=0?a、b互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等
相反数的知识点总结3
一、相反数的定义和性质
1、定义:只有符号不同的两个数叫做互为相反数,例2的相反数是-2,5的相反数是-5。
(1) a+b=0⇔a,b(2) 0 的相反数是 0
2、相反数的几何意义
互为相反数的两个数在数轴上对应的两个点位于原点的两侧且到原点的距离相等;反之,位于原点的两侧且到原点的距离相等的点所表示的两个数互为相反数。
3、相反数的性质
任何一个数都有相反数,而且只有一个。正数的相反数一定是负数;负数的相反数一定是正数;0的相反数仍是0。
二、相反数的相关例题
a(a≠0)的相反数是___
A. −aㅤB. a2 ㅤC. |a| ㅤD. 1a答案:A
解析:根据相反数的定义得a(a≠0)的相反数是?a故选A
相反数的知识点总结4
相反数
(互为)相反数的代数意义
1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数
4、一个实数x的相反数y,实际上是R到R的一个映射:y=f(x)=-x。
从二维空间看,这个映射可以看作是旋转(180度)映射(中心对称);
这个映射也可以看作是翻折(180度)映射(轴对称);
x=0,就是这个映射下的不动点。
(互为)相反数的’几何意义
1、相反数的几何意义:在数轴上,到原点距离相等的两个点表示的两个数是互为相反数.
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称。
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”;
希望同学们注意“互为相反数”和“相反数”在概念上的区别。
相反数的知识点总结5
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0Ûa+b=0Ûa、b互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等
相反数的知识点总结6
相反数规则
正数的相反数是负数,负数的相反数就是正数。
0的相反数是0,也就是0的相反数是它本身。同时,相反数是它本身的数只有0。无理数也有相反数。
互为相反数的两个数的商为-1(0除外)。
实数a相反数的相反数,就是a本身。
a-b和b-a互为相反数。
负数和0的绝对值是它的相反数。
虚数没有相反数。
相反数不具有传递性,即如果x是y的相反数,y是z的相反数,那么x不一定是z的相反数(除非x=y=z=0)。
如果您还不明白的话,请看下面几个例子:
非负数的相反数:0→01→-1;2→-2;3→-3;4→-4
非正数的相反数:0→0-1→1;-2→2;-3→3……………
无理数的相反数:π→-π
注解:
1、非负数又称非负有理数,习惯上我们将“正有理数和零”称作非负有理数。
2、非正数又称非正有理数,习惯上我们将“负有理数和零”称为非正有理数。
3、无理数是实数的一种,习惯**无限不循环小数叫做无理数。
相反数的知识点总结7
⒈相反数
只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:
⑴相反数是成对出现的;
⑵相反数只有符号不同,若一个为正,则另一个为负;
⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定
⑴任何数都有相反数,且只有一个;
⑵0的相反数是0;
⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0
3.相反数的几何意义
在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法
⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);0的相反数还是0;
⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5);)相反数的和为0a+b=0a、b互为相反数
5.相反数的表示方法
⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)
当a<0时,-a>0(负数的相反数是正数)
当a=0时,-a=0,(0的相反数是0)
6.多重符号的化简
多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
相反数的知识点总结8
初中数学相反数的代数意义
在数学中,相反数有两层含义。在实数的范围内,只有符号不同的两个数互为相反数,也就是说,如果两个实数a和b满足b=-a,我们就说b是a的相反数。例如:1的相反数是-1;m+n的相反数是﹣(m+n)=-m-n。
初中数学相反数的几何意义
在数轴上,在原点两旁并且到原点距离相等的两个点表示的两个数互为相反数。互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称,此时我们说“相反数具有互称性”。
初中数学相反数的性质
1、零的相反数是零;
2、两个互为相反数的实数相加结果为零;
3、在加减运算中,减去一个数可以看做加上这个数的相反数。
4、互为相反数的两个数的绝对值相等;
5、互为相反数的两个数乘积为非正数,比值为-1(0除外)。
相反数的知识点总结9
相反数的代数意义
1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
3、两个互为相反数的实数a和b必满足a+b=0。
4、一个实数x的相反数y,实际上是r到r的一个映*:y=f(x)=-x。
从二维空间看,这个映*可以看作是旋转(180度)映*(中心对称);
这个映*也可以看作是翻折(180度)映*(轴对称);
x=0,就是这个映*下的不动点。
(互为)相反数的几何意义
1、相反数的几何意义在数轴上,到原点距离相等的两个点表示的两个数是互为相反数.
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称。
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称*”;
知识点总结:也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数.
相反数的知识点总结10
1. 代数式:用运算符号“+ – × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
3.几个重要的’代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0 Û a+b=0 Û a、b互为相反数.
相反数的知识点总结11
(1)绝对值:在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:。
一个正数的’绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.
即
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;
相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
任何数的绝对值是非负数。
最小的正整数是1,最大的负整数是-1。
相反数的知识点总结12
一生活中的数
(一)本单元知识网络:
1、生活中的数
(1)认、读、数、写10以内的数。
(2)掌握10以内数的顺序和大小,初步体会基数与序数的含义。
(二)各课知识点:
1、可爱的校园(数数)
知识点:
(1)通过观察情境图,初步认识10以内的数。
(2)在数数的活动中,体会有序数数的方法。
2、快乐的家园(10以内数的认识)
知识点:
(1)初步认识1~10各数的符号表示方法。
(2)在具体情境活动中,学习运用数字符号表示日常生活中的一些物体的量。
3、玩具(1~5的认识与书写)
知识点:
能正确数出5以内物体的个数,能用数表示日常生活的一些事物,会正确书写1~5的数字。
4、小猫钓鱼(0的认识)
知识点:
(1)知道在生活中“0”所表示的几种常见的意义,知道“0”和1,2,3,…一样也是一个数,“0”比1,2,3,…小。
(2)会正确书写“0”
5、文具(6~10的认识与书写)
知识点:
(1)能够正确地数出数量是6~10的物体个数。
(2)学会6~10各数的读写方法。
相反数的知识点总结13
相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0 Û a+b=0 Û a、b互为相反数.
相反数的知识点总结14
1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
3、两个互为相反数的实数a和b必满足a+b=0。
4、一个实数x的相反数y,实际上是R到R的一个映射:y=f(x)=-x。
从二维空间看,这个映射可以看作是旋转(180度)映射(中心对称);
这个映射也可以看作是翻折(180度)映射(轴对称);
x=0,就是这个映射下的不动点。
(互为)相反数的`几何意义
1、相反数的几何意义 在数轴上,到原点距离相等的两个点表示的两个数是互为相反数.
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称。
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”;
知识点总结:也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数.
相反数的知识点总结15
⒈相反数
只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;
⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定
⑴任何数都有相反数,且只有一个;
⑵0的相反数是0;
⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0
3.相反数的几何意义
在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法
⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);
⑵求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);
⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化
简得5)
5.相反数的表示方法
⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)
当a<0时,-a>0(负数的相反数是正数)
当a=0时,-a=0,(0的相反数是0)
通过本文相反数的知识点总结的阐述,相信读者已经对相反数有了更深入的了解和掌握。当然,相反数只是数学中众多重要概念之一,我们应该继续学习和探索,为自己的数学知识打下更加坚实的基础。
本内容由学无止jin收集整理,不代表本站观点,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:https://wenku.puchedu.cn/25544.html