抛物线的基本知识点 初中数学抛物线中必知的知识点

抛物线是一种常见的二次函数图像,其形状类似于一个开口朝下或朝上的弧形。抛物线的知识点在数学、物理、工程等领域中,都具有广泛的应用。在本文中,我们将介绍抛物线的基本知识点,包括其定义、性质、图像等方面的内容。

抛物线的基本知识点 初中数学抛物线中必知的知识点

抛物线的基本知识点1

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab0),对称轴在y轴左;

当a与b异号时(即ab0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

=b^2-4ac0时,抛物线与x轴有2个交点。

=b^2-4ac=0时,抛物线与x轴有1个交点。

=b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-bb^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

抛物线

y = ax^2 + bx + c (a≠0)

就是y等于a乘以x 的平方加上 b乘以x再加上 c

置于平面直角坐标系中

a > 0时开口向上

a < 0时开口向下

(a=0时为一元一次函数)

c>0时函数图像与y轴正方向相交

c< 0时函数图像与y轴负方向相交

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

(当然a=0且b≠0时该函数为一次函数)

还有顶点公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))

就是y等于a乘以(x+h)的平方+k

-h是顶点坐标的x

k是顶点坐标的y

一般用于求最大值与最小值和对称轴

抛物线标准方程:y^2=2px (p>0)

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

抛物线的基本知识点2

准线、焦点:抛物线是平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹。这一定点叫做抛物线的焦点,定直线叫做抛物线的准线。

轴:抛物线是轴对称图形,它的对称轴简称轴。

焦准距:焦点到准线的距离称为焦准距,长度为p。

焦半径:连接抛物线上任意一点与抛物线焦点得到的线段。对于抛物线y2=2px,P(x0,y0),则|PF|=x0+p/2。

弦:抛物线的弦是连接抛物线上任意两点的线段。

焦弦:抛物线的焦弦是经过抛物线焦点的弦。对于抛物线y2=2px,A(x1,y1),B(x2,y2),则|AB|=x1+x2+p=2p/sin2θ(θ是AB的倾斜角)

正焦弦:抛物线的正焦弦是垂直于轴的焦弦,又叫通径。通径长为2p。

直径:抛物线的直径是抛物线一组平行弦中点的轨迹。这条直径也叫这组平行弦的共轭直径。所有的直径都与轴平行,因此也可以定义抛物线的直径为过抛物线上任意一点作轴的平行线(射线)

主要直径:抛物线的主要直径是抛物线的轴的一部分(在抛物线内部的射线)。

抛物线即把物体抛掷出去,落在远处地面,这物体在空中经过的曲线。

抛物线的基本知识点3

抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0);抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

抛物线定义:平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。二次项系数a决定抛物线的开口方向和大小:当a\u003e0时,抛物线向上开口;当a0),对称轴在y轴左;当a与b异号时(即ab\u003c0),对称轴在y轴右。常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。

抛物线的基本知识点4

1. 抛物线及其性质的基本思路

求抛物线方程时,若由已知条件可知方程的形式,一般用待定系数法;若由已知条件可知动点的运动规律,一般用轨迹法;凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意运用韦达定理;解决焦点弦问题,抛物线的定义有广泛的应用,还应注意焦点弦的几何性质,针对y2=2px(p>0),设焦点弦为x=my+■,既方便消元,又可避免斜率不存在的情况;可能的情况下,注意平面几何知识的应用,达到“不算而解”的目的.

2. 抛物线及其性质的基本策略

(1)求抛物线的标准方程

①定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程.

②待定系数法:先定位,后定量.根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式,从简单化角度出发,焦点在x轴上,设为y2=ax(a≠0);焦点在y轴上,设为x2=by(b≠0).

(2)焦点弦问题和焦半径

①焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F■,0的距离PF=x0+■.

②通径:过焦点F■,0且与x轴垂直的弦PQ叫通径,PQ=2p.

③焦点弦的性质:过F■,0的弦AB所在的直线方程为y=kx-■(k不存在时为通径).

④弦长:AB=x1+x2+p=■(θ为弦AB的倾斜角);x1·x2=■,y1·y2= -p2;■+■=■;以弦AB为直径的圆与准线相切.

在抛物线y2=4x上找一点M,使MA+MF最小,其中A(3,2),F(1,0),求点M的坐标及此时的最小值.

思索 “看准线想焦点,看焦点想准线”,可根据抛物线的定义进行相互转化从而获得简捷、直观的求解. 数形结合是灵活解题的一条捷径.

破解 如图1,点A在抛物线y2=4x的内部,由抛物线的定义可知,MA+MF=MA+MH,其中MH为M到抛物线的准线的距离,过A作抛物线准线的垂线交抛物线于M1,垂足为B,则MA+MF=MA+MH≥AB=4,当且仅当点M在M1的位置时等号成立,此时点M1的坐标为(1,2).

斜率为1的直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A,B两点,求线段AB的长.

思索 求焦点弦的弦长有多种方法,既要掌握运算方法,也要考虑一些不算或少算的方法. 数形结合是解析几何中重要的思想方法之一. 一些问题中,充分发挥“形”的作用,可以最大限度地减少运算,“看出结果”. 我们不妨考虑问题的一般情形:斜率为k(倾斜角为θ)的直线l过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,如何“看出”焦点弦的弦长?

如图2,由图可以看出,FA=p-FAcosθ,FB=FBcosθ+p,所以AB=FA+FB=■+■=■. 求解过程非常直观,在已知直线倾斜角的情形下,可以直接“看出”焦点弦的弦长. 直线斜率存在时,由k=tanθ,

破解 例2中,k=1(θ=45°),p=2,所以AB=8.

在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为■.

(1)求抛物线C的方程;

(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

思索 (1)由抛物线C的标准形式可得点F的坐标和准线方程,由圆心Q在弦OF的中垂线上可得点Q的纵坐标,再由点Q到抛物线C的准线的距离列出方程,确定p的值.

(2)存在性问题的常用方法是:先假设结论存在,进行演绎推理,若推出矛盾,则否定假设;若推出合理的结果,说明假设成立.

思路1:先求切线MQ的方程,结合弦OF的中垂线方程解点Q的坐标,再由点Q在弦OM的中垂线上解题即可.

思路2:先由点Q在弦OF,OM的中垂线上,再结合切线QM斜率的不同形式表示,列出方程思考.

1. 立足课本,夯实基础

掌握抛物线的定义、标准方程、简单性质等基础知识,深化对基础知识的理解,重视知识间的内在联系,提高应用数学思想方法解决问题的意识和能力.

2. 熟练通法,步步过关

对相对固定的题型,如弦长问题、面积问题等,解题思路、步骤相对固定,要以课本为例,以习题为模型,淡化技巧,理解通性通法,熟练步骤,能作出合理的算法途径设计,基本问题运算过关,破解“想得出,算不出、算不对”的瓶颈.

3. 重视抛物线的综合问题

重视抛物线与直线、圆等的综合研究,尤其是对性质中的一些定点、定值及相关结论的深入探究.高考试题往往有对圆锥曲线某方面几何性质的考虑,对性质深入的探究不在于知道一些结论,而是在这一过程中掌握探索的方法,理解解析几何的基本思想方法.

抛物线的基本知识点5

【关键词】 抛物线;问题;定义;标准方程;设计意图

【基金项目】本文系甘肃省教育科学“十二五”规划课题―培养高一新生发展性学习能力和适应数学新课程的学习方法的实验研究(课题批准号:GS[2014]GHBZ038)的阶段性成果之一

一、内容分析

本节课是人教A版高二数学选修1-1第二章2.3.1抛物线及其标准方程的第一课时,主要内容是抛物线定义和抛物线标准方程,它是继椭圆、双曲线之后的又一重要内容,是学习抛物线的性质及其应用的基础,有着承上启下的作用.

二、学情分析

学生已经学习并且经历了椭圆、双曲线的特征,建立适当的直角坐标系,推导椭圆、双曲线的标准方程的过程,有了一定的学习基础,但文科生基础又较为薄弱,他们思维活跃但逻辑思维能力欠佳,直观形象思维较强但抽象能力较差.

三、教学过程

环节一:生活中的抛物线

设计意图:让学生欣赏现实生活中的一些抛物线图片,体会到抛物线的美及其在现实生活中的应用,从而产生研究抛物线的动力.

环节二:问题情境、引入新课

问题1:由2.1椭圆例6和2.2双曲线例5,得到产生椭圆和双曲线的另一种方法:平面内与一个定点F的距离和到一条定直线l的距离的比是常数e的点的轨迹,当0

设计意图:这一问题使学生产生当动点到一定点距离与它到定直线距离相等(即离心率为1)时点的轨迹是什么的强烈愿望,使学生完成角色的改变,从“要我学”变成“我要学”.这样入手引出抛物线的定义,加强了与椭圆和双曲线的联系.

环节三:抛物线的定义

问题2:为什么要强调定义的另一种说法?

设计意图:进一步说明椭圆、双曲线及抛物线有统一的定义,即圆锥曲线的统一定义,培养了学生的观察与概括能力.

问题3:若定点F在定直线l上,则动点M的轨迹还是抛物线吗?

设计意图:抓住学生对定义的中出现的小漏洞,设置疑点,激发学生好奇心,同时完善了抛物线定义,也为下一步作出抛物线图形提出需要.

问题4:抛物线定义中的“一动三定”是什么?

设计意图:剖析抛物线的定义,将定义可归结为“一动三定”,加深对定义的理解,突出了本节课的重点,也便于学生理解记忆定义.

教师强调:抛物线是圆锥曲线的一种,不是双曲线的一支.

环节四:抛物线的标准方程

问题5:比较椭圆、双曲线标准方程的建立,如何选择坐标系,求得的抛物线方程才能更简单,图像具有对称美呢?

设计意图:引导学生积极思考,讨论发现最优方案,充分利用学生已有知识解决当前问题,唤起学生的美感意识,进一步培养学生的直觉判断能力、思维优化意识及适当建立坐标系的能力.

问题6:再观察3个二次函数的图像,哪个具有对称美,形式最简单?

设计意图:让学生比较、鉴别发现要使抛物线具有对称美,形式最简单,必须使抛物线的顶点在坐标原点,图像关于x轴或y轴对称.再次确认选择的方案.

问题7:如何推导出抛物线的标准方程?

设计意图:采取选择的方案建立适当的直角坐标系,类比椭圆、双曲线的标准方程的推导,学生很顺利地推导出抛物线的标准方程,突破了本节课的难点.由学生独立完成,符合学生现阶段学习能力,充分突出了教学互动,培养了学生的操作能力和辩证唯物主义思想.

问题8:抛物线标准方程中p(p>0)的几何意义是什么?

设计意图:学生结合图形,自主探究出标准方程中p指什么?为什么 p>0?

教师强调:与椭圆、双曲线的标准方程类似,一条抛物线,由于它在坐标平面内的位置不同,方程也不同,所以抛物线的标准方程还有其他形式.

问题9:若抛物线的开口分别向左、向上、向下,你能根据上述办法求出它的标准方程吗?

设计意图:通过类比、轮换求解开口不同时抛物线的标准方程及相应的焦点坐标、准线方程,填58页的表格,完善抛物线的四个标准方程

教师强调:抛物线标准方程有4种形式,位置不同,方程形式也不同,焦点坐标、准线方程、开口方向也不同.

为了更好地理解掌握抛物线的标准方程,还设置了以下三个问题:

问题10:根据表中抛物线的标准方程的不同形式,如何判断抛物线的焦点位置,开口方向?

问题11:根据表中抛物线的焦点坐标、准线方程、开口方向的不同,会判断对应的是哪个抛物线标准方程吗?

问题12:4种位置的抛物线标准方程的共同点和不同点有哪些?

设计意图:在这几个问题上,要充分相信学生,挖掘学生的自身潜能,培养学生发现知识,探求知识的能力.通过这几个问题的解决,学生切实掌握了4种抛物线的标准方程、图像、焦点坐标、准线方程、开口方向等之间的关系,突出了重点内容,为后面知识的应用做好准备.

抛物线的基本知

抛物线的基本知识点6

一、教材分析

(一)教学内容的特点

本节课是“抛物线及其标准方程”的第一节课,主要学习内容为抛物线的定义和标准方程。它是学生学习解析几何部分的重要基础知识。这一节课是在学完“椭圆”和“双曲线”的基础上,将研究求曲线方程的方法拓展到抛物线,又是继续学习抛物线的几何性质的基础,同时还为后面学习抛物线的性质做好准备。

(二)教学重点、难点、关键点分析

教学重点:抛物线定义及其标准方程。

教学难点:抛物线标准方程的推导。

(三)教学目标分析

1.知识与技能目标

(1)掌握抛物线的定义和标准方程,明确p的几何意义;

(2)能用抛物线的定义解决一些简单的问题。

2.过程与方法目标

(1)通过抛物线与椭圆、双曲线的类比,培养学生类比归纳能力。

(2)在抛物线定义的获得和其标准方程的推导过程中进一步渗透数形结合等数学思想和方法。

3.情感、态度与价值观目标

(1)通过对抛物线定义的诠释,培养学生探索数学的兴趣。

(2)增强学生团队协作能力以及主动与他人合作交流的意识。

(3)感受四种形式的抛物线的美。

二、学生分析

(一)学生的知识储备分析

学生已学习了求曲线方程的一般方法和步骤以及椭圆和双曲线的方程,但学生仍对坐标法解决几何问题还存在障碍。

(二)学生的数学能力分析

学生通过几何图形来发现轨迹上点的特征的能力较强(数形结合),但计算能力较弱,因此在方程的推导中会遇到障碍,成为本节的难点。

三、教学方法分析

本课采用引导发现法,即“创设问题―启发讨论―发现结果”的一种研究性教学方法,以画一画、议一议、求一求、用一用几个步骤来实施教学过程。

四、教学过程

(一)引入部分

1.认识抛物线

(1)利用多媒体给出嫦娥一号飞船的运行轨迹图,引起注意。

(2)请学生举出现实生活中所看到有关抛物线的实例。

2.创设情境

提出问题:怎样画出抛物线呢?抛物线在直角坐标系下是否可以像圆一样用方程来表示?

(二)新课部分

1.画一画(画抛物线)

教师请学生拿出课前准备的硬纸板、三角板、细绳、铅笔,同桌一起合作画抛物线。把一根直尺固定在纸板上面,把一块三角板的一条直角边紧靠在直尺的边缘,取一根直线,它的长度与另一直角边相等,细绳的一端固定在顶点A处,另一端固定在纸板上点F处。用笔尖扣紧绳子,靠住三角板,然后将三角板沿着直尺上下滑动,画出抛物线。

目的:(1)给学生提供一个动手、动脑、动手的学习机会;(2)通过实验可以使学生对探究“满足什么样的条件的点的集合为抛物线”有深刻的理解。

2.议一议(定义及概念)

设问1:通过上述的实际操作,请问抛物线是满足什么条件的点的轨迹?

设问2:为什么要相等?反之,若不相等会怎样?

目的:通过上述的学生实验操作后,先请学生大胆探究、想象,再由教师动画演示,加深对抛物线定义条件的理解。

3.求一求(求抛物线标准方程)

类比于椭圆的学习,来推导抛物线的标准方程。根据抛物线的定义,到定点和到定直线的距离相等,设P是抛物线上任一点,要求抛物线方程,需要借助直角坐标系。已知一条抛物线及其准线,有几种方法建立直角坐标系,并求出方程?(分组讨论设问1:求曲线方程的一般方法怎样?)

设问1:本题中可以怎样建立直角坐标系?(让学生根据自己的经验来确定,可能出现多种方法)

目的:通过对每种方法的分析,找到最适合、最简单的方法。

设问2:与椭圆、双曲线一样,怎样得到不同形式的抛物线的标准方程。(让学生自己建立不同形式坐标系,探索得出结论)

目的:从多个角度认识抛物线,培养学生发散思维。

4.用一用(知识运用)

例1:(1)抛物线y=ax2(a>0)的焦点坐标和准线方程,(2)已知抛物线的焦点在x轴正半轴上,焦点到准线的距离是■,求抛物线的标准方程、焦点坐标和准线方程。

思考变式:如果(2)的焦点分别在x轴负半轴、y轴的正负半轴上呢?

目的:通过本题的练习,学生能加深对抛物线的焦距与标准方 程之间关系的理解,同时会求标准方程的基本量。

(三)小结部分

通过整理知识,使之形成网络。

提问―小结:本节课学习的主要内容是什么?

目的:培养学生的概括与整体优化能力。

(四)作业部分

通过作业训练,巩固提高。

五、板书设计

充分体现活化知识,对知识加深理解,加深记忆的作用。

六、教学反思

在这节课的教学中,我设计了能让学生动手操作的过程,使学生始终处于问题探索研究状态之中,结合使用多媒体、演示板教学,使展现知识的发生过程形象化。同时还注重让学生在一次次探究、讨论、总结中得出结论,这样不但可以加深学生对定义概念的理解,还能培养学生的实践能力。

抛物线的基本知识点7

【关键词】考查的知识、能力、思维;思维障碍,试题解析思路,一题多解,变式与拓展,反思总结

题目:已知抛物线C:x2=2pyp>0上一点S(m,4)(m>0)到焦点F的距离为|SF|=174.

1.求p,m的值;

2.设抛物线C上一点P的横坐标为t(t>0)过P点的直线交C于另一点Q,交x轴于M,过点Q作PQ的垂线交C于另一点N,若MN是C的切线,求t的最小值.

波利亚在《数学的发现》的序言中写道:“中学数学教学首要的任务就是加强解题的训练.”从近几年的高考试题看,注重对教材中的基础知识,基本技能,基本方法和基本思想的考查.这道题设计巧妙,知识覆盖面广.对于教师把握新课标要求更高,思维能力更强.能有效检测教师的专业能力,教学能力和教研能力.同时又能考查学生基础知识,基本技能,及解题时注重通性通法.还能培养学生的思维能力,提高学生的综合素质,达到真正有效的教学.此题通过以下三个方面考查:

(一)考查要求

从知识方面:

(1)考查抛物线的定义,标准方程和简单的几何性质;

(2)直线方程,曲线的切线方程及导数的几何意义,曲线与方程、不等式等多种知识之间的交叉、渗透和综合.

从能力方面:

(1)培养学生运算求解能力;

(2)数形结合能力及识图、析图数据处理能力;

(3)化归转化能力,使学生知识形成系统性,各种能力得到整合,获得全面发展.

从思想方法:

(1)几何问题代数化;

(2)数中有形,形中有数,数与形的完美结合的思想;

(3)函数与方程的基本思想.

(二)学情分析

(1)第一小题考查抛物线的定义及几何性质难度中等偏易的题,学生易错点是求抛物线的准线方程,正确理解抛物线的定义;

(2)第二小题涉及太多点的坐标是未知的,首先应克服心理关.注意解题时的通性通法.繁难的计算如何逐步分解,尽量减少未知量分别求出Q,M,N的坐标,对于MN是曲线的切线,利用切线的几何意义的处理.大部分的学生有一定的困难,或者理解M点在过N点的切线方程.涉及函数方程的思想方法求t的最小值是此题的难点,如何突破难点?怎样让学生构建一个有序的网络化的知识体系,使学生各种能力得到整合,获得全面的发展.通过对本题分析讲解,一题多解,拓展与变式得以巩固.

(三)析题

切入点:对问题(1)准确理解抛物线的定义,求m,p;对问题(2)减少未知量使用,用t表示P,Q,M,N点的坐标,利用数形结合,把几何问题代数化.

关键点:分别求出P,Q,M,N的坐标,准确理解MN是曲线C的切线与N的导数值关系.存在P点就是PQ的斜率存在,关于k的方程有解.利用函数方程的思想,求t的最小值.

(四)解题

图1

(1)解抛物线的准线y=-p2,则FS=4+P2=174,P=12又S(m,4)在抛物线上,m2=4(m>0),m=2.方程x2=y,所以m=2,p=12.

(2)过P点(t,t2)斜率存在的直线方程可设y-t2=kx-t,联立y-t2=k(x-t),x2=y,得x2-kx+kt-t2=0.设Qx1,y1,MX0,O,Nx2,y2.

x1,t是方程的两根,则x1t=kt-t2,x1=k-t,所以Qk-t,k-t2,Mkt-t2k,0.

直线QN与PQ垂直直线QN的方程y-(k-t)2=-1k(x-k+t),联立方程组y-k-t2=-1kx-k+t,x2=y,得x2+1kx-k-t2+tk-1=0.

则又x1+x2=-1k,x1=k-t,x2=-1k-k+t,

N-1k-k+t,-1k-k+t2,kMN=-1k-k+t2-1k-k+t2k,

MN是C的切线,kMN=2×2,-1k-k+t2-1k-k+t2k=2(-1k-k+t)整理k2+kt-2t2+1=0.

关于k的方程有解则,Δ=t2-4×-2t2+1≥0.

9t2-4≥0;t≥23或t≤-23(舍去),t≥23,t的最小值23.

点评先确定PQ的直线方程,联立方程组求出M,Q点坐标.QN与PQ垂直,确定QN的直线方程,求出N点坐标.直线MN与曲线C相切,利用导数的几何意义,整理出关于t,k的方程,方程有解,从而求t的最小值.解题时注意通性通法,在不同知识交汇处要进行有效整合.解析几何常常用“山重水复疑无路,柳暗花明又一村.”

第二小题解法2:设Pt,t2,Qx,x2,Nx0,x20,则直线MN的方程y-x20=2x0x-x0.

令y=0,得Mx02,0,所以kPM=t2t-x02=2t22t-x0,kNQ=x20-x2x0-x=x0+x.因为NQQP,且两直线斜率存在,所以kPM・kNQ=-1.即2t22t-x0・x0+x=-1.整理,得x0=2t2x+2t1-2t2.又Qx,x2在直线PM上,则MQ与MP共线,得x0=2xtx+t.由得2t2x+2t1-2t2=2xtx+t(t>0).所以t=-x2+13x,所以t≥23或t≤-23(舍去).所以所求t的最小值23.

点评分别设出P,Q,N的坐标,利用直线MN,求出M点坐标,直线PM与NQ互相垂直,又M,Q,P三点共线,用t表示x0,整理得关于x,t的函数利用均值不等式求t的最小值.第二种解法利用三点共线应用曲线方程与不等式知识的有效结合.

(五)变式与拓展

变式1已P知抛物线C:x2=2pyp>0,其焦点F到准线的距离12.

(1)求抛物线C的方程;

(2)过M(0,1)作两条直线l1,l2,l1与抛物线交于点A,B,l2与抛物线交于E,F,且直线AE,BF,且直线AE,BF交于点P,直线AF,BE交于Q点,求证:MP・MQ是定值.

变式2已知抛物线C的顶点为原点,其焦点F(0,c)(C>0)到直线l:x-y-2=0的距离为322,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.

(1)求抛物线C的方程;

(2)当点Px0,y0为直线l上的定点时,求直线AB的方程.

抛物线的基本知识点8

二次函数的知识点主要是它的图象与性质。

二次函数的图象为抛物线,它是一个轴对称图形。主要是记住抛物线的顶点坐标,对称轴,以及抛物线的增减性,且图象增减性与抛物线对称轴有较大关系。

二次函数二次项系数( a )的正负值决定了其图象开口方向,而开口方向又决定了抛物线顶点是在图象最高点还是最低点。a > 0 时图象开口向上,顶点在最低点; a < 0 时图象开口向下,顶点在最高点。抛物线的对称轴经过顶点,它是一条 “ x = 顶点横坐标 ” 的直线,对称轴与 y 轴平行。若 a > 0,则在对称轴的左侧图象上的对应点的 y 值(纵坐标)随 x 值(横坐标)的增大而减小,在对称轴右侧图象上的对应点的 y 值 随 x 值的增大而增大;反之,当 a < 0 时,抛物线图象增减性在对称轴两侧刚好与 a < 0 时的情况相反。

抛物线的基本知识点9

抛物线知识点总结

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab0),对称轴在y轴左;

当a与b异号时(即ab0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

=b^2-4ac0时,抛物线与x轴有2个交点。

=b^2-4ac=0时,抛物线与x轴有1个交点。

=b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-bb^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

抛物线

y = ax^2 + bx + c (a≠0)

就是y等于a乘以x 的平方加上 b乘以x再加上 c

置于平面直角坐标系中

a > 0时开口向上

a < 0时开口向下

(a=0时为一元一次函数)

c>0时函数图像与y轴正方向相交

c< 0时函数图像与y轴负方向相交

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

(当然a=0且b≠0时该函数为一次函数)

还有顶点公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))

就是y等于a乘以(x+h)的平方+k

-h是顶点坐标的x

k是顶点坐标的y

一般用于求最大值与最小值和对称轴

抛物线标准方程:y^2=2px (p>0)

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

抛物线的基本知识点10

抛物线的性质:

1.抛物线是轴对称图形。对称轴为直线

x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P(-b/2a,(4ac-b^2)/4a)

当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

焦半径:

焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点Fèçæø÷ö

p2,0的距离|PF|=x0+p2.

求抛物线方程的方法:

(1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程.

(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0).

练习题:

设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆交l于B,D两点.∠BFD=90°,△ABD的面积为4 ,求p的值及圆F的方程。

【解析】因为以F为圆心,FA为半径的圆交l于B,D两点,

所以△BFD为等腰直角三角形,故斜边|BD|=2p,

又点A到准线l的距离d=|FA|=|FB|= p,

所以S△ABD=4 = |BD|×d= ×2p× p,

所以p=2.

所以圆F的圆心为(0,1),半径r=|FA|=2 ,

圆F的方程为x2+(y-1)2=8.

抛物线的基本知识点11

关于抛物线知识点总结

平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。下面导师为大家带来的是初中数学知识点归纳之抛物线。以下是“抛物线知识点总结”希望能够帮助的到您!

抛物线

y = ax^2 + bx + c (a≠0)

就是y等于a乘以x 的平方加上 b乘以x再加上 c

置于平面直角坐标系中

a > 0时开口向上

a < 0时开口向下

(a=0时为一元一次函数)

c>0时函数图像与y轴正方向相交

c< 0时函数图像与y轴负方向相交

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

(当然a=0且b≠0时该函数为一次函数)

还有顶点公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))

就是y等于a乘以(x+h)的平方+k

-h是顶点坐标的x

k是顶点坐标的y

一般用于求最大值与最小值和对称轴

抛物线标准方程:y^2=2px (p>0)

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

大家看过初中数学知识点归纳之抛物线,要知道其中定点叫抛物线的焦点,定直线叫抛物线的准线。。接下来还有更多更全的初中数学知识点大全等着大家来记忆呢。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的`公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

抛物线的基本知识点12

抛物线

y = ax^2 + bx + c (a≠0)

就是y等于a乘以x 的平方加上 b乘以x再加上 c

置于平面直角坐标系中

a > 0时开口向上

a < 0时开口向下

(a=0时为一元一次函数)

c>0时函数图像与y轴正方向相交

c< 0时函数图像与y轴负方向相交

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

(当然a=0且b≠0时该函数为一次函数)

还有顶点公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))

就是y等于a乘以(x+h)的平方+k

-h是顶点坐标的x

k是顶点坐标的y

一般用于求最大值与最小值和对称轴

抛物线标准方程:y^2=2px (p>0)

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

抛物线的基本知识点13

1. 抛物线定义:

平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,定点不在定直线上。它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0

2. 抛物线的标准方程有四种形式,参数的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中为抛物线上任一点。

3. 对于抛物线上的点的坐标可设为,以简化运算。

4. 抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于,直线与的斜率分别为,直线的倾斜角为,则有解。

说明:

1. 求抛物线方程时,若由已知条件可知曲线是抛物线一般用待定系数法;若由已知条件可知曲线的动点的规律一般用轨迹法。

2. 凡涉及抛物线的弦长、弦的中点、弦的.斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。

3. 解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质。

抛物线的焦点弦的性质:

关于抛物线的几个重要结论:

(1)弦长公式同椭圆.

(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部

(3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p>,高二;0)的斜率为k的切线方程是y=kx+

(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是

(5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),则

(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F.

利用抛物线的几何性质解题的方法:

根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.

抛物线中定点问题的解决方法:

在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。

利用焦点弦求值:

利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。

抛物线中的几何证明方法:

利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。

抛物线的基本知识点14

教学目标

1.抛物线的定义

2.抛物线的四种标准方程形式及其对应焦点和准线

教学重难点

教学重点:1.抛物线的定义和焦点与准线

2.抛物线的四种标准形式,以及p的意义。

教学难点:抛物线的四种图形,标准方程的推导及其焦点坐标和准线方程。

教学过程

一、 知识回顾:

二次函数中抛物线的图象特征是什么?(平行于y轴,开口向上或者向下)

如果抛物线不平行于y轴,那么就不能作为二次函数的图象来研究了,今天我们来突破研究中的限制,从一般意义上来研究抛物线。

二、 课堂新授:

(讲解抛物线的作图方法)

定义:平面内与一个定点F和一条定直线l 的距离相等的点的轨迹叫做抛物线。点F叫做抛物线的焦点,直线l叫做抛物线的准线。

如图建立直角坐标系xOy,使x轴经过点F且垂直于直线l ,垂足为K,并使原点与线段

KF的中点重合。

结合表格完成下列例题:

1. 已知抛物线的标准方程是 y2=6x,求它的焦点坐标和准线方程。

2. 已知抛物线的焦点坐标是F(0,-2),求它的标准方程。

解:1.∵抛物线的方程是 y2=6x,

∴p=3

∴焦点坐标是(,0),

准线方程是x=-

2.∵焦点在y轴的负半轴上,且,

∴p=4

∴所求的抛物线标准方程是 x2=-8y。

三、 随堂练习:

1.根据下列条件写出抛物线的标准方程:

四、 课堂小结:

由于抛物线的标准方程有四种形式,且每一种形式都只含有一个参数p,因此只要给出确定的p的一个条件就可以求出抛物线的标准方称。当抛物线的焦点坐标或准线方程给定以后,它的标准方程就可以唯一的确定下来。

五、课后作业:P119习题8.5 2、4

[高中数学抛物线课件]

抛物线的基本知识点15

抛物线的焦点弦的性质:

关于抛物线的几个重要结论:

(1)弦长公式同椭圆.

(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部

P(x0,y0)在抛物线外部

(3)抛物线y2=2px上的点P(x1,y1)的切线方程是

抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+

(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是

(5)过抛物线y2=2px上两点

的两条切线交于点M(x0,y0),则

(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F,

又若切线PA⊥PB,则AB必过抛物线焦点F.

利用抛物线的几何性质解题的方法:

根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.

抛物线中定点问题的解决方法:

在高考中一般以填空题或选择题的`形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。

利用焦点弦求值:

利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。

总之,抛物线是一种重要的图像,具有广泛的应用。因此,掌握抛物线的基本知识点对于学生和专业人士来说都是非常重要的。有想要了解更多内容的朋友们,欢迎关注本站,随时更新内容。

本内容由学无止jin收集整理,不代表本站观点,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:https://wenku.puchedu.cn/25511.html

(1)
学无止jin的头像学无止jin

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注