鸡兔同笼教学的意义在于培养学生的逻辑思维能力和解决问题的能力。通过这个经典的问题,学生需要运用代数方程的知识和推理能力来解决,从而锻炼他们的逻辑思维和数学思维能力。以下是《鸡兔同笼》教学设计及设计意图教案汇总的具体内容,欢迎老师们来参考和借鉴。
![《鸡兔同笼》教学设计及设计意图教案汇总(15篇)](https://wimg.puchedu.cn/uploads/2023/08/20230821053348162.png)
《鸡兔同笼》教学设计及设计意图1
一、教学目标
【知识与技能】
理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。
【过程与方法】
经历自主探索解决问题的过程,体验解决问题的策略的多样化;在解决问题的过程中,提高逻辑推理能力,增强应用意识和实践能力。
【情感态度价值观】
感受古代数学问题的趣味性。
二、教学重难点
【教学重点】
掌握运用列表法、假设法解决“鸡兔同笼”问题。
【教学难点】
理解掌握假设法,能运用假设法解决数学问题。
三、教学过程
(一)引入新课
PPT呈现课本的主题图,并提问:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?是什么意思?大家能不能算出各几何呢?
引出课题——《鸡兔同笼》
(二)探索新知
先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下
教师总结学生回答:3只兔子,5只鸡,22只脚;4只兔子,4只鸡,24只脚。均不对
追问:按顺序列表填写一下,应该是各有几只?
得出结论有3只鸡,5只兔子。
进一步追问:还有没有其他方法?
学生活动:前后四人一小组讨论。
教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。
(三)课堂练习
PPT再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”
学生活动:学生自主选择喜欢的方法进行解决,一名学生到黑板上板演,其余学生独立完成,在黑板上板演的学生在结束后充当小老师给其他同学进行讲解
(四)小结作业
提问:今天有什么收获?
教师引导学生回顾解决鸡兔同笼问题的方法。
课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。
《鸡兔同笼》教学设计及设计意图2
教学目标:
1、通过学习帮助学生学会用列表法解决问题,能对数据进行再认识、再分析,将列表的过程更优化。
2、让学生经历尝试与猜测的过程,在探究的过程中提高学生分析问题解决问题的能力。
3、以古典名题《鸡兔同笼》为载体,让学生体验解决问题方法的多样化, 从而培养学生多种解题能力。
4、让学生了解到解决鸡兔同笼问题的方法在现实生活中的广泛应用,体会学习数学知识的价值。
教学重点:
让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略――列表。
教学难点:
体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
课前准备:多媒体课件。
教学过程:
一、游戏引入,渗透列举法
同学们,老师想和你们玩一个猜一猜的游戏,看看谁的反应快:1只鸡是两条腿;1只兔子是四条腿。那么:
1只鸡和5只兔子一共有几条腿?(22条腿)
2只鸡和4只兔子一共有几条腿?(20条腿)有什么简便算法吗?
3只鸡和3只兔子一共有几条腿?(18条腿)
4只鸡和2只兔子一共有几条腿?(16条腿)谁知道老师接下去会问什么问题?
5只鸡和1只兔子一共有几条腿?你怎么知道老师会问这个问题?
说说你是根据什么提出这个问题的?看看你能发现什么?
发现:
①鸡的只数逐渐增加,而兔的只数不断减少;不管怎样增加和减少,它们的总头数都是6个;(板书:6)
②鸡的只数在减少1只的同时,兔的只数就增加1只;
③随着鸡的只数减少,兔的只数增加,它们的腿数依次减少2条,为什么会这样呢?
你们的发现太有价值了,那么根据你们的发现,不用计算能不能推出5只鸡和1只兔子一共有几条腿?(14条腿)根据什么呢?谁来说说?
现在我们来看这个完整的表格:像这样列出表格逐一举出问题的所有情况,这种方法在数学上我们称为列举法。(板书:列举法)
【评析】教师创设了游戏情境引入,在增添学生学习兴趣的同时,减缓了新知识学习的坡度,通过游戏来渗透列举法,为下一步学生地自学奠定了基础。设计科学合理,符合学生的认知规律。
二、结合名题,讲授列举法
1、自主探索
在游戏中老师告诉了同学们鸡和兔的只数,你们很容易的求出它们的腿数;如果反过来,先告诉鸡和兔共有的头数和腿数,你能分别求出鸡和兔的只数吗?这就是记载在《孙子算经》上的中国古典名题:鸡兔同笼问题。(板书:鸡兔同笼)
听说过“鸡兔同笼”这个问题吗?会解答吗?老师希望你们能把自己的经验带到课堂上,帮助同学们解决这个问题,好吗?请看大屏幕:(课件出示)
【评析】课题引入巧妙,将数学知识灵活的反其道而行之,形成新的数学问题,这种逆向思维的演绎无形中也培养学生的逆向思维,为学生可持续发展打下基础。
[例]鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?
看懂题同学来帮同学们解释一下?明白题目的意思了吗?想不想自己尝试着解决这道古典名题?无从下手的同学可以仿照我们刚才接触过的列举法,希望老师帮忙的同学请举手示意。(学生自做,教师巡视)
2、比较梳理
老师看到同学们有好多做法,我们先来看看这种做法:(实物投影展示)
(1)列举法:
(出示①)先假设20个头中有1只鸡和19只兔子,看看它们腿数,然后逐一往下试,一直试到符合已知条件为止。
这种通过假设与列表格逐一列举、尝试,得出答案的方法,我们称它为逐一列举法(板书:逐一列举法)。也可假设兔子是1只、鸡是19只的做法如图:有没有比这种方法再简单的呢?我们来看看这种做法②:。② ③
假设1只鸡19只兔时,我们看到腿的总数是78条,这说明兔子太多了,所以再举例时就假设鸡是5只,兔子15只,这时腿的总数是70只,兔子数还应减少,假设鸡是15只兔子5只时,腿的总数又少了,所以再增加兔子数,就这样不断的进行尝试,最后得出鸡有13只兔子有7只。
这种做法没有逐一举例,而是先估计鸡与兔数量的可能范围,这样可以减少举例的次数。谁能给这种列举法也起一个名字?(板书:跳跃列举法)同学们看看这种方法与第一种方法比较有什么优势?还有比这种方法更简单的列举法吗?(出示③取中列举法)大家把书翻到81页,看看淘气的想法。
现在请同学们观察书中三个表格,比较一下它们有什么共同点和不同点?哪种方法最好?为什么?对了,在学习数学中采用最简单的方法解决最复杂的题才是聪明之举啊。
关于列举法我们就研究到这,我们再来看看这些做法:
(2)假设法:
(20×4-54)÷(4-2)=13(只)…鸡 20-13=7(只)…兔
先假设20个头都是兔子的头,那么就有20×4=80条腿,比实际54条腿多了26条腿,为什么会这样呢?就是因为我们把鸡也看成兔了,如果用一只鸡来置换一只兔,就要减少4-2=2条腿,26条腿里有几个2条腿呢?26÷2=13,因此13是鸡的只数,而20-13=7只就是兔子的只数。
也可假设这20个头都是鸡的头数来计算:
(54-20×2)÷(4-2)=7(只)…兔20-7=13(只)…鸡
(3)列方程:
我们来看这种解法是否可行?这是什么方法?列方程的关键是什么?这道方程的等量关系是什么?
解:设有兔x只,则鸡则有(20-x)只。
4x+2(20-x)=54
4x+40-2x=54
2x=14
X=7…兔20-7=13(只)…鸡
设兔的只数为x,那么鸡有(20-x)只。根据它们的腿数54只为等量关系列出方程,方程的左面是兔的腿数加上鸡的腿数,方程的右面是他们腿数的总和,然后再解出来,用方程思考解题思路是顺向思维,比较好理解。
【评析】教师对于新授知识这个环节地处理,大胆独特。教师以“鸡兔同笼”这个知识为载体相继介绍了多种解题方法:假设法、列举法、列方程。借助一个知识点给孩子5种解题方法,这样的数学学习对孩子来说是大有益处的。教师地指导和学生地探索与自主学习相机结合,既开阔了学生学习数学知识的视野,又培养了学生学习数学的技能。
三、小结新课,深化鸡兔同笼问题
关于鸡兔同笼的问题我们可以用列举法、假设法、画图法和列方程等这么多的方法来解,其中列举法采取取中列举更为科学简便。不过生活中谁会将鸡和兔放在一个笼子里?即使放在一个笼子里又有谁会去数他们的脚呢?生活中有类似鸡兔同笼的问题吗?请看练习:
四、巩固联系
[练习1]一队猎人一队狗,两队并成一队走。数头一共是二十,数脚一共四十四。你知道猎人几个狗几只?
[练习2]小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?
[练习3]用大小卡车往城市运29吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?
【评析】教师在新课结束之后,没有结束“鸡兔同笼”问题的研究,而是在此基础上继续此类问题的研究,引导孩子不管什么问题只要抓住了“鸡兔同笼”的本质,就可以采取同一种解题方法。在讲授知识的同时,帮助学生总结一类事物的本质,潜移默化中训练学生对一些日常生活中的现象进行观察与思考,从中发现并体会一些特殊的规律。
五、总结全课,留有思考余地
出示我国古代数学名著《孙子算经》上的题目,想不想知道这本书是怎样解答这道题的?
脚数÷2-头数=兔数 头数-兔数=鸡数
课后同学们可以用这种方法口算一下我们做的练习题,并想想这种算法的道理是什么?看看我们古人的想法与我们的想法哪个更奇妙!
【评析】课堂的结尾让我们依然看到了与众不同的设计。教师放弃了固有的“总结模式”,而是把一个新的问题抛给学生作为课堂的结束,让学生在学后深思、反省、感悟。以“鸡兔同笼”为载体,弱化其具体解法,而由此及彼的数学联想则成为超越知识之上的更高的课堂教学追求。
【全课总结】
第一,以学论教的教学设计独具匠心 。本节课最大的一个亮点就是突破了教材的局限,大胆尝试,用一种全新的教学方法来诠释数学课堂教学。教师借助一个知识点来讲授多种解题方法,无形中培养了学生学习数学的能力。教师在备课时把教材和教参作为讲授知识的一个载体,而并非唯一依据,因此教师根据所教学生的实际情况,结合自身对教材地透彻理解,创造性地重组了教材,加以灵活地处理设计出独具匠心的教案,从例题的呈现、分析、讲解等方面突破了延续几十年的照本宣科的教法,对孩子数学知识地学习、学习能力地培养有很好的促进作用,较好地体现了教学活动的有效性和生动性。
第二,以生为本的教学过程自然流畅。随着对学生主体观的重新思考与定位,看一堂好课必需要看学生在课堂上的表现。本节课教师在课堂中创设了一种有利于学生发挥自身主体性的环境,通过课前精心设计与课堂中教师地恰当引导,构建一个流畅自然的教学过程。教师恰到好处地充分地利用了课堂生成的资源,实实在在地解决了课堂中出现地问题,在教师地引领下,学生亲历了知识地形成过程,举一反三地领悟了“鸡兔同笼”问题。教师“教不越位”,学生“学习到位”,真正处理好主体与主导的关系。
第三,以思维延伸为主线的课堂提问完美灵动。本节课教师在一节课里增大教学容量,尽可能多的给孩子提供学习的机会,在掌握知识的同时形成数学技能的训练,让学生在上完这节课后的很长一段时间,仍感觉回味无穷并有所得。现在的数学课堂教学基本是问答式的,用问题来作为课堂教学的主脉,必须有完美的设计,否则课堂教学的思路太单一。数学是逻辑性非常严密的学科,讲解数学与做数学题时思维一定要严密,应做到 “步步为营”、“丝丝相扣”,不仅让学生知道一道题的答案,更让学生知道这么做的目的,只有让学生对问题的理解达到一定的深度,学生才能形成一定的思维、推理能力,这也是做题的最终目的。
《鸡兔同笼》教学设计及设计意图3
教学目标
1.了解”鸡兔同笼”问题,感受中国古代数学问题的趣味性。
2.尝试列表枚举、算术、方程等不同的方法解决“鸡兔同笼”问题,体验解决问题方法的多样性,提高解决实际问题的能力。
3.通过自主探索、合作交流,培养合作意识和逻辑推理能力。
4.体会数学问题在日常生活中的应用,进而体会数学的价值。
学情分析
“鸡兔同笼”题目是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”题目,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
教材的编排有以下特点:
1.教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”题目,并通过小精灵的提问激发学生解答我国古代著名数学题目的爱好。
2.注重体现解决“鸡兔同笼”题目的不同思路和方法。
3.让学生进一步体会到这类题目在日常生活中的应用。
教学重点:亲历列表、假设、方程等解题的过程,体会解决问题的一般策略。
教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略解决生活中的实际问题。
教学过程
活动1【导入】激趣导入 引发思考
导语:同学们,通过课前的游戏老师发现你们真是爱思考的孩子,那今天我们就带着思考一起走进《鸡兔同笼》,鸡和兔大家都很熟悉了,谁能用数学的语言说一说鸡和兔各有什么特点?瞧,两条腿的鸡和四条腿的兔相遇了,这时候有几个头,几条腿?如果一群鸡和兔关在同一个笼子里,我们要研究什么呢?看,问题来了。
课件出示:笼子里有若干只鸡和兔,从上面数,有12个头;从下面数,有32条腿。鸡和兔各有几只?(全班齐读)
活动2【活动】合作交流 预设生成
(一)这个问题课前你们通过自学都有了自己的想法,现在请你们把自己研究的收获和小组的同学交流交流,等一下大胆地上台展示自己的研究成果。开始吧!(学生交流)
(二)老师刚才听了你们的交流,老师发现同学们的思维真的很活跃,谁愿意第一个上台展示?掌声有请第一个小勇士上讲台给大家交流他解决问题的方法,大家要认真倾听,随时向这位同学提问。
1.生:我是这样想的,假设鸡为0只,兔为12只的时候,腿数为48;当鸡的只数为1只,兔为11只的时候,腿为46,依次类推,当鸡为8只,兔为4只的时候,腿就刚好是32.这样都得出了鸡为8只,兔为4只。
请同学们观察分析这些数据,你发现了什么?(鸡兔共12只;鸡的只数在逐一增多;兔的只数在逐一减少;腿的条数也在减少;鸡增加一只兔减少一只,腿数减少两条)追问:腿的条数是怎样减少的?谁的只数变化使腿数减少?反过来观察你有什么发现吗?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2条。)
(1)还有哪些同学与他的方法相同或类似?你们认为这种方法有什么特点?这位同学的这个方法按顺序一个一个列举下来,不容易遗漏,我们取个名字记住它吧!(板书:逐一列举)
(2)还有一个同学也用了逐一列举法,为什么有的要用9次找到正确答案,有的只要5次呢?
(3)说得真好,你还注意到腿的条数跟实际情况越接近,试的次数会越少,真是好样的。除了逐一列举的方法,还有其他方法吗?
(4)取中列举和跳跃列举方法的同学汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的?谁还有不同的调整策略?问:你们觉得这种方法怎么样?(简便、快捷)
重点追问:计算验证后发现什麽,怎样想到用这种方法进行调整的?
(三)回顾与交流
回顾一下我们的解题思路和方法,首先我们根据已知信息进行尝试猜测,发现腿数不符合实际情况,我们这时要认真分析然后进行合理调整,这样才能更快找到正确答案。(板书:分析调整)你最喜欢那种列举方法?为什么?
谢谢同学们还有其他的方法解决这道题吗?
(四)继续交流分享
2.生:我先假设全都是鸡,那么就有24条腿,比实际的腿少了32-24=8条。多的这8条腿就是由于我们把兔当作了鸡,每只兔鸡少算了2条腿,所以用8除以2就得到了兔的只数,兔是4只,鸡只有8只。
师:大家听懂这个方法了吗?你有什么问题要提出来的?没关系,我们请12个小朋友充当小动物来演一演帮忙同学们理解一下这种方法。
(学生表演,借助学生表演理解算术解法每一步的意思)
师:如果假设全都兔呢?你们会解决吗?对手试试看。(学生动手试做,然后汇报)。
3.生:我用的是画图的方法。我们先画12个圆代表12个头,然后个头添上2条腿,就一共添了24条腿,这个时候鸡的腿数齐了,剩下8条腿的全是兔的腿了,每只兔子还差2条腿,所以再给每只兔子添上两条腿,这样就可以添4只兔子,所以有4只兔子,有8只鸡。
生:我觉得这个方法和列举法一样,如果数目较多的时候,画图就麻烦了。
师:这道题用画图的方法可行吗?
生:数目简单的时候可行。
师:这也就解决问题的一种策略,如果数目较多,我们可以把图画在心中,心中想怎么画就可以了。下面有请其他小组进行汇报。
4.生:我们小组是用抬腿法来做的。我们先让每只动物抬起一条腿来,这样就还剩下了26-8=18条腿,我们再让每只动物再抬一次腿,这个时候就还剩下了18-8=10条腿了。这10条腿全都是兔子的了。所以兔子有5只,鸡有3只。
师:这个方法就是古人的奇思妙想,你们也想到了,真好!有兴趣的同学课后可以看课本的阅读资料,也可以和同学们演一演,研究研究。
小结过渡:古人的一道趣题引发了我们的思考,我们从不同角度,用不同方法进行研究都能解决这个趣题,这就是数学的魅力啊!孩子们,其实《鸡兔同笼》趣题早在1500年前就记载在孙子算经里头,作为我国古代留下来的文化遗产,后来还流传到了日本,那日本的《龟鹤问题》和我们学的有什么相似之处呢?
《鸡兔同笼》教学设计及设计意图4
一、 教学目标
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,体验解决问题策略的多样化。了解列表法、假设法等解决问题的方法,在解决问题的过程中培养逻辑推理能力,增强应用意识和实践能力。
二、教学重难点
教学重点:渗透化繁为简的思想,体会假设法的逻辑性和一般性。
教学难点:理解用假设法解决“鸡兔同笼”问题的算理。
三、教学准备 课件、实物投影。
四、教学过程
课前交流
1. 教师:同学们,喜欢猜谜语吗?猜一猜这是什么动物?(鸡)答对了,这个呢?(兔子)对,都见过鸡和兔子吧?老师也画了一只,(出示头)观察一下,它是鸡还是兔子?(添上2条腿)现在知道是什么了吗?再添上几条腿就能变成兔子呢?对!再添上2条腿!你是怎么判断的?好,先猜到这,准备好了吗?我们开始上课,上课!
(一)情境导入
2.我们今天要研究的内容就与鸡和兔有关,他们之间会发生什样的数学问题呢,让我们穿越时空隧道,回到1500年前,走进数学名著《孙子算经》(播放视频)
3、揭示课题
这道题是什么意思啊?生:。。。。。。师:正有此意。
这节课,我们就来研究鸡兔同笼问题。(板贴:鸡兔同笼)
(二)探究新知
1. 你能发现什么数学信息? 35个头,是什么意思?说明什么?94只脚呢?
仔细思考,还有什么隐藏的信息吗?(鸡有2条腿,兔有4条腿,一只兔比一只鸡多2条腿)
同样是找信息,深度却不一样。
2、利用以上信息现在你能快速算出鸡和兔各有几只吗?看来有难度,数太大了是吗?那我们把数改小一些,从简单的问题入手,看能不能找到解决问题的方法。
3.(出示例1)这个问题课前你们通过预习都有了自己的想法,现在请把自己研究的收获和小组的同学交流交流,请先阅读交流提示。好,开始吧。
(师:江南好 生:风景旧曾谙)
师:谁愿意第一个上台展示,大家要认识倾听、随时向他提问。(逐一列举的)
生1:我是按顺序找的,先算7只鸡和一只兔,一共有18条腿,不对,我继续找6只鸡和2只兔,一共有20条腿,也不对,再找5只鸡和3只兔,一共22条腿,不对,再继续找4只鸡和4只兔,一共有24条腿,还不对,继续找3只鸡和5只兔,正好是26条腿,所以鸡有3只,兔有5只,大家同意吗?谢谢,谁有疑问或补充?XXX
生2:我是这样找的,我从中间开始找的,我先找4只鸡和4只兔,一共有24条腿,答案不对,我就继续往后找,3只鸡和5只兔,正好有26条腿,所以鸡有3只,兔有5只。大家同意吗?谁有疑问或补充?
生3质疑:你为什么从中间开始找?(这样比较简单)算出来24条腿,为什么往后找,不往前找?(因为算出来24条腿少了,所以往后找,增加兔的只数,减少鸡的只数)
生4:假如你找到的腿数比26多,应该怎么调整?(减少兔的只数,增加鸡的只数)我听明白了,谢谢!
师小结:
在一问一答中,我们就找到了解决问题的方法,真好。我们来看(PPT)
第一个同学是按顺序把所有情况都列举了出来,像这样,根据一定的规律,按顺序把所有的可能性都列举出来,这种思考问题的方法就是有序思考。有序思考可以让我们做到不重不漏。
另一个同学是从中间开始列举的,无论怎样找,都根据26腿这个条件进行了调整,从而找到了鸡和兔的只数,真棒,刚才我们用到的方法就是列表法(PPT列表法)
4、现在你能用列表法快速解决这道题了吗?为什么不能,太麻烦了是吗?怎么办?那我们继续研究刚才那道题,你觉得有什么更为简单的办法吗?(可以用画图的方法)刚才巡视的时候,我发现一个同学是这样解决这道题的,请他来讲讲好吗?(出示做了一半的算式及画图)
生:用8个圆表示8个头,每个头下面先画2条腿,此时有16条腿,列式为2X8=16(条)比实际少了几条腿?列式是26-16=10(条)
师:刚才这位同学把它们全都看成鸡,也就是假设全是鸡(板贴)给每只鸡先画了两条腿,这时有16条腿,与实际相比,少了10条腿。我们接着往下想,这10条腿应该怎么办呢?怎么添?拿出探究单2,先想一想,再用不同颜色的笔画一画,添一添,并接着列出算式。开始吧!
(完成的同学可以同桌交流你的方法)
(师:日出江花红胜火 生:春来江水绿如蓝)
都完成了吗?哪个同学上台展示你的方法?
生1:我先把它们都看做鸡,给每只鸡添上2条腿,这时候一共有2X8=16(条)腿,题目中是26条腿,我算了算,少了10条腿,我就继续给每只鸡添上2条腿,一共添了5次,才凑成了26条腿,就是把5只鸡变成兔子,最后算出来鸡有3只,兔有5只。谁有疑问或补充?
生2:你为什么先画了8只鸡?(假设全是鸡)2X8=16(条)是什么意思?(假设全是鸡以后,有16条腿)为什么又添腿?(题目中是26条腿,我算了算少了10条腿,)为什么2条2条的添?(因为一只兔看做鸡少了2条腿,)10÷2=5中的2是什么意思?(一只兔子看做鸡少算了2条腿)我听明白了,谢谢!
生1:不客气!
5、下面我想请8个同学上台扮演这些小动物,帮助同学们理解题意。
快点看看桌洞,请拿到头饰的同学快速戴好,到黑板前面向大家站成一排,假设全是鸡,现在一共有多少条腿?(16条)16条与实际相比少了(10条)少的是谁的腿?(兔子的腿)也就是说有一群兔子混进了小鸡群里当卧底是吗?我们一起把它们找出来。把1只小鸡换成一只兔子,就能增加2条腿,那咱们一起喊一声变,从这只小鸡开始,一个一个地就抬起前腿好吗?来,变,够了吗?继续喊变,够了吗?那变,够吗?再变,可以了吗?再变,现在呢?可以了,我们一起来看,把几只小鸡变成了兔子,(5只)来,场务,上道具。现在看,有(3)只鸡,(5)只兔。
谢谢你们精彩的表演帮助我们理解了题意。
6、现在请同学们闭上眼睛回想刚才解决问题的过程。(PPT播放)
首先我们假设全是鸡,给每只鸡添上了2条腿,一共添了16条腿,列式为2X8=16(条)与实际相比,少了10条腿,列式为26-16=10(条)接着我们就2条2条的添腿,一共添了5次,把5只鸡换成了兔子,所以兔子就有5只,列式为:10÷2=5(只)那么鸡就有3只,列式为:8-5=3(只)
师:我们一起来看(板书过程)假设全是鸡, (板贴假设)一共有16条腿,16条腿和26条腿相比,少了10条腿,(板贴对比)那我们就给他调整腿数,1只兔子看成鸡,少了2条腿,所以2条2条地添,一共添了5次,也就是有5只兔子被看做了鸡,我们就把5只鸡换成5只兔子,所以,兔就有10÷2=5(只)鸡就有8-5=3(只)哎,同学们,这个10÷2=5(只)中的2是什么意思?
生:一只兔子被看做鸡少了2条腿
也就是鸡和兔的腿数差是吗?你能用一个算式表示出2的意思,让人一眼就能知道它指的是什么吗?
生:4-2=2(条)
师:4是指谁的腿?2呢?后面的2呢?其实也就是鸡和兔的腿数差是吗?
添上这个算式,过程才能更清楚,完整,现在思路理清了,这样看,解决这个问题需要几个算式?(5个)请同学们快速把探究单进行完善。
7、刚才我们用假设全是鸡的方法,很快算出了鸡和兔的只数,能不能假设全是兔?在练习本上画一画,算一算。(汇报交流算法)
生:假设全是兔,一共有几条腿(32条腿)比实际多了6条腿,说明有鸡被看做了兔,把1只兔子换成1只鸡,就可以减少2条腿,也就是要把3只兔子换成3只鸡,所有鸡有3只,兔有5只。
8、对比两种方法。刚才我们用假设全是鸡或假设全是兔的方法解决了问题,这种方法叫做假设法。仔细观察这两组算式,你有什么发现?注意:假设全是鸡,先算出来的是兔的只数,假设全是兔,先算出来的就是鸡的只数。这两种方法,你更喜欢哪一种,为什么?
(三)知识运用学生独立完成古代趣题
1、用假设法解决孙子算经的原题。
不画图,你能用假设法解决这道题了吗?用你喜欢的方法在练习本上试试看。
完成的同学可以同桌对对答案。谁来说说看,你是怎样算的?
生1:。。。。。。。。和我一样的同学请举手,谁有疑问或补充?
生2:35×2=70是什么意思?。。。。。。。。
师:同学们真棒,都能帮古人解决问题了。
(四)小结提升
我国的鸡兔同笼传到日本后又被称为龟鹤问题。你会算吗?试一试(出示)
学生自己先解决,再汇报!说的不是鸡和兔的事呀,为什么还可以用鸡兔同笼的解法做?它们有什么联系吗?也就是这里的鹤相当于谁?都同意吗? 龟呢?(多媒体出示)看来找到和鸡兔同笼之间的关系,问题就简单多了。
(人民币问题)这道题呢,你能找到鸡和兔的影子吗?
(租船问题)这道呢?鸡和兔的影子又在哪呢?
(小结方法)谁来说一说怎样从题中快速的找到总腿数?(最大的那个数)总头数呢?(两种不同类型的总个数)每一种各有多少个,就是腿数。腿数少的就是(鸡)腿数多的就是(兔)。
好了,现在请同学们回顾一下,这节课你有什么收获?
回想这节课的研究过程,我们先发现了复杂的解决不了的问题,然后从简单问题入手,找到了解决问题的办法,这就是数学上经常用到的方法——化繁为简,然后从简单的问题中发现方法,从而解决了复杂问题。(PPT出示)
其实鸡兔同笼问题的解法还有很多呢,除了这节课我们学习的列表法、假设法,还有五年级将要学习的方程法,除此之外,还有数学家们想出的很多奇思妙想,感兴趣的同学可以课下研究。(PPT)探索的脚步永不停止,希望你们都能做一个善于思考、乐于追求的孩子。这节课我们就上到这,下课!
《鸡兔同笼》教学设计及设计意图5
一、讲述故事,引入课题
讲述:我小时候,像你们这么大。一天,在放学回家的路上,一个白胡子老爷爷拦住我,说:“小朋友,你上学了,我考考你!”我从小爱动脑筋,就说:“老爷爷,您考吧!”
提问:小朋友们愿意自己动手、动脑,想想、画画,解决“鸡兔同笼”这个难题吗?
【设计意图】讲故事是孩子喜闻乐见的学习活动,故事引入让学生初步了解“鸡兔同笼”问题,从二年级的“太难不会”到五年级通过看书学会了解决这一问题,引导学生认识到学习是循序渐进的过程,需要不断积累。同时也引导学生感受这类问题虽然具有一定的挑战性,但也并不是“遥不可及”,进一步激发二年级学生的挑战欲望,增强探究的信心,让学生“望而生欲”,此外通过为学生提供动手、动脑,想想画画等这些“脚手架”,为实现自主探究、建构新知提供可能。
二、自主探索,构建模型
1.理解题意,明确条件和问题。
提问:“鸡和兔关在同一个笼里”是什么意思?“数它们的头共有5个”是什么意思?
“数它们的腿共有14条”是什么意思? 要问我们什么问题?
(教师演示课件,出示鸡和兔的图像。)
2.讨论交流,画图探索。
(1)自由猜测。
提问:笼里可能有几只鸡,几只兔呢?大家先猜猜看!
预设学生中可能出现的想法有:可能是3只鸡2只兔;可能是2只鸡3只兔;可能是1只鸡4只兔;可能是4只鸡1只兔。
(2)引导画图。
讲述:大家猜的都有道理!笼子里到底有几只鸡几只兔呢?我们可以画一些简单的图——“数学画”来帮助思考。
预设学生中可能出现的方法有:
①用圆形表示头(到黑板上画) 。
②用竖线表示腿,鸡有两条腿就用2条竖线表示,兔有四条腿就用四条竖线表示(到黑板上画成 )。
(3)展示汇报。
学生中可能会出现的方法有:
①方法一:先画1只鸡1只兔,再画1只鸡1只兔,再画1只鸡,一数正好是14条腿。笼子里有3只鸡2只兔。
②方法二:先画两只鸡,再画两只兔,一数有了12条腿,还差2条,我就又画了1只鸡,正好14条腿。也发现有3只鸡2只兔。
③方法三:先画1只兔1只鸡,再画1只兔1只鸡,再画1只兔,一数有16条腿,多了2条,就擦掉2条腿。这样就有3只鸡2只兔。
④方法四:先全部画成鸡,二五一十,一算还少4条腿,就2条2条地添上,就是2只兔3只鸡。
⑤方法五:先全部画成兔,四五二十,多了6条腿,就2条2条地擦去,这样也得到有3只鸡2只兔。
⑥方法六:脑中想。我想1只鸡和1只兔共有6条腿,画两次,二六十二,还少两条腿就是再画1只鸡,我是先知道有3只鸡2只兔,再画下来的。
⑦方法七:先把14条腿全部画好,再用头去套,套2条腿的就是鸡,套4条腿的就是兔,也能知道笼子里有3只鸡2只兔。
(4)验证小结。
提问:小朋友们想出了这么多方法,得到的结果都是3只鸡,2只兔,与笼中的结果是不是一样呢?(电脑显示笼中的鸡和兔。)
提问:想一想怎样画更快呢?(课件把方法4和方法5的画法再演示一遍,如下图所示。)
【设计意图】教学中根据二年级学生的认知特点,放慢了学习步伐,节奏处理力求细腻、层次分明。先让学生理解题目的每句话的意思,明晰已知条件和问题,结合生活经验,直观了解鸡和兔脚的只数,为成功画图探索问题扫除障碍。接着引导学生猜测,二年级孩子大多从“头共有5个”出发作出了4种猜测,进而引导学生画数学画,主要经历了讨论画法—自主尝试—展示汇报—验证方法—-优化方法的学习过程,整个过程充分体现学生为主体的教学理念,渗透“移多补少”的数学思想。同时教师尊重孩子的创作,倾听孩子的声音,想学生所想,知学生所困,解学生所惑,教师真正成为学生学习的组织者、引导者和合作者。
三、巩固应用,解决问题
讲述:用这种想想、画画的方法可以帮助我们解决日常生活中遇到的一些问题。
1. 生活问题
提问:可以用什么样的简单图形表示自行车和三轮车?(鼓励学生想出不同的表示法。)
实物投影展示学生的不同画法,电脑演示两种假设的思路。
2.有6张长方形纸,它们的背面各有一张5元或10元的人民币,合起来是40元。能知道5元的有几张?10元的有几张?
引导:我们可以先在脑中画图,也可以在纸上画图,还可以把画图与口算结合起来。
3.猜硬币游戏
游戏规则:每个小组桌上信封里都有2分和5分的硬币共7个,总共的钱数写在信封上。请大家先猜一猜,有几个2分的,有几个5分的。猜出结果后先在小组内讨论一下,再打开信封,看猜的结果对不对。比一比,看哪一组最先猜出来!
【设计意图】“学以致用”,必要的练习应用是学生巩固知识、内化认识的重要途径。教师通过设计车辆轮子、人民币面值、猜硬币游戏等练习,动静结合,引导孩子在想想、画画、猜猜等形式中,赋予练习更多趣味性、活动性,巩固了知识,提升了对鸡兔同笼问题的认识,沟通数学与生活的联系,初步渗透“转化”的数学思想,为后续学习做好孕伏。
四、总结全课、体验成功
《鸡兔同笼》教学设计及设计意图6
教学目标:
(一)知识技能
1、使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,感受我国传统的数学文化。
2、使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,并能选择适当方法解决一些与“鸡兔同笼”相似的数学问题。
(二)过程与方法:在学生探究方法的过程中,使学生理解并运用假设的思想解决数学问题,形成有序思考的意识,体验数学的思想方法。
(三) 情感态度价值观:过数学文化的熏陶感染培养学生的民族自信心和研究问题的科学素养。
教学重点:
使学生理解并运用假设的思想,通过画图法、列表法来解答“鸡兔同笼”及其类似的数学问题。
教学难点:
使学生发现并掌握用列表法解决鸡兔同笼及类似的数学问题。
教学过程:
一、激趣导入 渗透方法
1、 出示绕口令
1只小鸡2条腿, 1只兔子4条腿;
2只小鸡( )条腿, 2只兔子( )条腿;
3只小鸡( )条腿, 3只兔子( )条腿。……
【设计意图:在激发学生兴趣,缓解学生紧张情绪的同时,使学生明确鸡和兔的腿数】
2、 教师出示一幅简单得不能再简单的图, 说明○代表头,线段代表腿,让学生说是鸡还是兔子?紧接着再出示两条线段。 让学生说是鸡还是兔子?观察图,比较鸡和兔子的异同
【设计意图:使学生通过观察抓住鸡兔背后的数学本质:相同之处:鸡和兔都有一个头,不同之处:鸡有2条腿,兔有4条腿。从课的一开始,就向学生渗透画图的方法】
3、笼子里有鸡和兔子共4只,鸡和兔子可能有几只?
老师把你们说的这3种情况的画出图来了,很直观。还可以怎样出示展示更清晰?
如果学生说出列表,老师先出示无序列表,再请学生帮忙修改
【设计意图:引导学生思考问题要全面、有序。同时渗透画图、列表的方法,为后面学生独立解题打下一定的基础】
接着让学生从表格中观察:你能从头数和腿数的变化中发现什么?引导学生发现:头数不变时,多一只兔子就多两条腿,多了一只鸡就减少两条腿
【设计意图:一是引导学生从数学现象背后发现数学规律,同时为后面学生出现多种列表法进行了渗透】
二、独立探究 解决问题
刚才我们把鸡和兔放在同一个笼子里,这就是有名的“鸡兔同笼”。
谁知道“鸡兔同笼”研究的是什么问题?(把鸡和兔放在同一个笼子里,给出总头数和总腿数,求鸡兔各几只)
1、出示例题,读儿歌
菜市场里真热闹,鸡兔同笼喔喔叫。
数数头儿有8个,数数腿儿26。可知鸡兔各多少?
2、 指名说说已知条件和问题。
引导学生找出隐藏的条件:每只鸡有2条腿,每只兔有4条腿
3、你们愿意自己尝试解答吗?
每个同学有2个选择
第一:卡片上画了8个圆,代表8个头,请你用线段代表腿,画一画。
第二:用填表的方法,看能否找到答案。
(如果学生提出用计算的方法,也让他们先画图和列表,之后可以再计算)
【设计意图:这节课的重点是使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,所以这里强调的是尝试使用直观的画图法、列表法。】
三、小组交流 开阔思路
小组讨论的要求是
1、给组内同学讲一讲你解题的方法和过程。
2、认真倾听组内同学的发言,你又学会了哪种解题方法?如果有疑问,请你提出来,大家共同解决。
【设计意图:提出具体明确的小组合作的要求,这样的要求便于学生进行交流,提高小组合作学习的效率。】
四、全班交流 成果共享
1、画图法
预设1:用八个圆表示鸡的头,所以每个头下面画两条腿,等于16条,比已知条件给得26条少10条。所以在每个头下面再添上2条腿,一直添到26条腿。结果是5只兔子3只鸡)
预设2:用八个圆表示兔的头,一共32条腿,多了6条腿,擦去3个2条腿结果也是5只兔子3只鸡
为什么2条腿2条腿的添上?为什么2条腿2条腿的擦去?
你认为这两种画法哪种简单?
【设计意图:使学生思维更加简单,避免思维定势,真正掌握画图的本质。】
2、列表法
教师让学生在实物投影下讲解列表的方法。
(预设3种列表法)
3、逐一列表法
情况1:鸡的只数 1 2 3 4 5 6 7
兔的只数 7 6 5 4 3 2 1
共有足数 30 28 26 24 22 20 18
情况2
鸡的只数 1 2 3
兔的只数 7 6 5
共有足数 30 28 26
情况1与情况2进行比较
确定只有一个答案时,找到了问题答案,后面的情况可以不再列举
情况3:兔的只数 1 2 3 4 5 6 7
鸡的只数 7 6 5 4 3 2 1
共有足数 18 20 22 24 26 28 30
情况4:兔的只数 1 2 3 4 5
鸡的只数 7 6 5 4 3
共有足数 18 20 22 24 26
情况3与情况4进行比较
确定只有一个答案时,找到了问题答案,后面的情况可以不再列举
情况2与情况4进行比较
哪个列表能快速找到答案,为什么?
4、取中列表法
鸡的只数 4 3
兔的只数 4 5
共有足数 24 26
5、跳跃列表法
鸡的只数 1 3
兔的只数 7 5
共有足数 30 26
(如果后两种没有出现,教师可以进行引导,也可以在第二课时进行引导,具体情况根据课堂学生生成情况和课堂时间而定。
如果三种表格都出现了,那么根据每一种列表的特点,给每种列表方法分别取个名字。并建议学生采用逐一列表法)
【设计意图:培养学生有序思维的能力,同时也体现出不同的学生用不同的方法解决问题,从数据中发现蕴含的规律,培养学生灵活思维的能力。建议学生采用逐一列表法是为以后解答开放性问题做准备】
五、灵活运用 巩固方法
1、今天我们通过画图和列表方法解决了“鸡兔同笼”问题。
我们的祖先早在1500多年前就已经用巧妙的方法解决了这个问题,数学著作《孙子算经》里就有记载。这些著作流传海外,对其他国家也产生了较大影响。其中日本也进行了类似研究,不过日本称之为“龟鹤问题” 。
出示:龟和鹤共6只,龟的腿和鹤的腿共有18条,龟和鹤各有几只?
你认为“龟鹤问题”和 “鸡兔同笼”有联系吗?
用你刚才没有尝试过的方法解决
2、设计意图:
1、使学生感受我国传统的数学文化。
2、 能找到二者之间内在联系,培养学生解决类似“鸡兔同笼”数学问题的能力。
3、 使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法,能够尝试体验不同的解决问题的策略。
【设计意图:这两题一道比一道有难度,让孩子根据自己情况自主选择】
六、总结收获 畅谈体会
通过今天的学习,你有什么收获?
《鸡兔同笼》教学设计及设计意图7
一、教学目标
(一)知识与技能
了解“鸡兔同笼”问题的结构特点,渗透化繁为简的思想,掌握用列表法、假设法,初步形成解决此类问题的一般性策略。
(二)过程与方法
经历猜测的过程,尝试用列表、假设的方法解决“鸡兔同笼”问题,引导学生有序思考,使学生体会解题策略的多样性。
(三)情感态度和价值观
在解决问题的过程中,培养学生的迁移思维能力,感受古代数学问题的趣味性。
二、教学重难点
教学重点:渗透化繁为简的思想,体会用假设法的逻辑性和一般性。
教学难点:理解用假设法解决“鸡兔同笼”问题的算理。
三、教学准备 课件、实物投影。
四、教学过程
(一)情境导入
教师:同学们,大约一千五百多年前,我国古代数学名著《孙子算经》中记载了一道数学趣题——“鸡兔同笼”问题。
(板书课题:鸡兔同笼)出示主题图:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
教师:这道题是以文言文的方式表述的,雉就是野鸡,哪位同学看懂它的意思了?
学生:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?
教师:从题中获取信息,你知道了什么,要求什么问题?
(二)探究新知
1.尝试解决,交流想法。
既然“鸡兔同笼”问题能流传至今,就应该有它独特的思考方式和解题方法。
问题:同学们想一想,算一算鸡和兔各有多少只? 2.感受化繁为简的必要性。
大家在刚才猜了好几组数据,经过验证都不正确,为什么猜不对呢?
数据大了不好猜,我们应该怎么办? 我们把数字改小些,先从简单的问题入手。(课件出示例1)“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?”
教师:从题中你们能获取哪些信息?和生活常识联系在一起,你还能说出哪些信息?
预设:学生1:鸡和兔共8只,鸡和兔共有26只脚。学生2:鸡有2只脚,兔有4只脚。
【设计意图】渗透化繁为简的思想,引导学生理解题意,找出隐藏条件,帮学生初步理解“鸡兔同笼”问题的结构特点。3.猜想验证。
《鸡兔同笼》教学设计及设计意图8
一、教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。
3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
二、教材分析:
(一)设计意图:
通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
(二)设计思路:
遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。
在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。
教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
三、教学设计:
<一>、提出问题
师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”
问:这段话是什么意思?(生试说)
师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只? 这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。
(板书课题:鸡兔同笼问题)
<二>、解决问题
师:说明为了研究方便,我们不妨先将题目的条件做一个简化。
(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)
师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)
学生初步交流,教师提炼:可以用画图的方法、可以用列表法、可以用假设法、还可以用方程的方法。
师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。
学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)
小组活动充分后进入小组汇报、集体交流阶段。
师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?
学生汇报探究的方法和结论:
1:画图法:(学生展示画图方法及步骤)
①先画8个头。
②每个头下画上两条腿。
数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。
③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够26条腿。
每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔.这样就得出答案,笼中有5只兔和3只鸡。
2.列表法:
(展示学生所列表格)
学生说明列表的方法及步骤:
学生汇报:我们先假设有8只兔这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。
鸡 8 7 6 5 4 3 2 1
兔 0 1 2 3 4 5 6 7
脚 16 18 20 22 24 26
鸡 8 7 6 5 4 3 2 1
兔 0 1 2 3 4 5 6 7
脚 16 18 20 22 24 26
学生汇报:我们组得出的结果也是只3鸡、5只兔,但我们不是一个一个地试,这样太麻烦了,我们是2个2个地试。
鸡 8 6 4 3
兔 0 2 4 5
脚 16 20 24 26
《鸡兔同笼》教学设计及设计意图9
一、教学目标
(一)知识与技能
了解“鸡兔同笼”问题的结构特点,渗透化繁为简的思想,掌握用列表法、假设法,初步形成解决此类问题的一般性策略。
(二)过程与方法
经历猜测的过程,尝试用列表、假设的方法解决“鸡兔同笼”问题,引导学生有序思考,使学生体会解题策略的多样性。
(三)情感态度和价值观
在解决问题的过程中,培养学生的迁移思维能力,感受古代数学问题的趣味性。
二、教学重难点
教学重点:渗透化繁为简的思想,体会用假设法的逻辑性和一般性。
教学难点:理解用假设法解决“鸡兔同笼”问题的算理。
三、教学准备 课件、实物投影。
四、教学过程
(一)情境导入
教师:同学们,大约一千五百多年前,我国古代数学名著《孙子算经》中记载了一道数学趣题——“鸡兔同笼”问题。
(板书课题:鸡兔同笼)出示主题图:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
教师:这道题是以文言文的方式表述的,雉就是野鸡,哪位同学看懂它的意思了?
学生:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?
教师:从题中获取信息,你知道了什么,要求什么问题?
(二)探究新知
1.尝试解决,交流想法。
既然“鸡兔同笼”问题能流传至今,就应该有它独特的思考方式和解题方法。
问题:同学们想一想,算一算鸡和兔各有多少只? 2.感受化繁为简的必要性。
大家在刚才猜了好几组数据,经过验证都不正确,为什么猜不对呢?
数据大了不好猜,我们应该怎么办? 我们把数字改小些,先从简单的问题入手。(课件出示例1)“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?”
教师:从题中你们能获取哪些信息?和生活常识联系在一起,你还能说出哪些信息?
预设:学生1:鸡和兔共8只,鸡和兔共有26只脚。学生2:鸡有2只脚,兔有4只脚。
【设计意图】渗透化繁为简的思想,引导学生理解题意,找出隐藏条件,帮学生初步理解“鸡兔同笼”问题的结构特点。3.猜想验证。
教师:有了这些信息,我们先来猜猜,笼子可能会有几只 鸡?几只兔?猜测需要抓住哪个条件? 学生:鸡和兔一共有8只。
教师:是不是抓住这个条件就一定能马上猜准确呢?好,老师这里有一张表格,请大家来填一填,看看谁能又快又准确地找出答案来,开始。
学生汇报。
《鸡兔同笼》教学设计及设计意图10
一、教学目标
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。
3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
二、教材分析
1、设计意图
通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
2、设计思路
遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。
在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。
3、教学重点
体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
三、教学设计
1、提出问题
师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”
问:这段话是什么意思?(生试说)
师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。
(板书课题:鸡兔同笼问题)
2、解决问题
师:说明为了研究方便,我们不妨先将题目的条件做一个简化。
(课件出示)例1 :鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)
师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)
学生初步交流,教师提炼:可以用画图的方法、可以用列表法、可以用假设法、还可以用方程的方法。
师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。
学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)
小组活动充分后进入小组汇报、集体交流阶段。
师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?
学生汇报探究的方法和结论:
(1)画图法
(学生展示画图方法及步骤)
①先画8个头。
②每个头下画上两条腿。
数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。
③给一些鸡添上两条腿,叫它变成兔。边添腿边数,凑够26条腿。
每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔。这样就得出答案,笼中有5只兔和3只鸡。
(2)列表法
师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?
(3)假设法
教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:
板书:方法一:假设8只都是鸡,那么兔有:
(26-8×2)÷(4-2)=5(只)
鸡有:8-5=3(只)
同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3(只),所以我们还可以这样去想:
板书:方法二:假设8只都是兔,那么鸡有:
(4×8-26)÷(4-2)=3(只)
兔有:8-3=5(只)
(4)列方程
我们还可以根据“鸡的腿+兔的腿=26条”列方程解答:
解:设兔有X只,那么鸡有(8-X)只。
4X+2(8-X)=26,
16+2X=26
2X=26-16
X=3
8-3=5(只)
即鸡有3只,兔有5只。
师:通过以上的学习,你有什么发现,有什么想法吗?
生:解决一个问题可以有不同的方法。
3、想一想,做一做
(1)尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
(2)完成书中练一练中的4道题。
《鸡兔同笼》教学设计及设计意图11
【教材分析】
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。解决这类问题的方法包括:列表法、假设法、方程法等。教材把这一问题安排在四年级,学生还没有学过方程,因此这里主要引导学生通过猜测、列表、假设等方法来解决问题,培养学生猜测、有序思考及逻辑推理的能力,体会假设法的一般性。在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
【学情分析】
“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。“列表法”是学生比较容易接受的,也就是通过有序猜测和计算得出结论,“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。
【教学建议】
1、教学中要注意渗透化繁为简的思想。
2、引导学生探索解决问题的策略和方法。
3、介绍有关鸡兔同笼问题的“趣解”,既激发学习的兴趣,又可以拓宽学生的思路。
【教学目标】
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,了解列表法、假设法等解决问题的方法,在解决问题的过程中培养逻辑推理能力,增强应用意识和实践能力。
3、了解 “鸡兔同笼”问题解决的多种有趣方法,体验问题解决方法多样化。
【教学重点】经历自主探究解决问题的过程,掌握运用列表法、假设法解决“鸡兔同笼”问题。
【教学难点】理解掌握假设法,能运用假设法解决数学问题。
【教学过程】
一、情境导入。
今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题,请看屏幕:(课件出示以下情境图)
师:你能说说这道题是什么意思吗?(说明:雉指鸡)让学生说说题意,然后出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”问题。(板书课题)
有的同学已经在计算了,说说看鸡有多少只?兔有多少只?
【设计意图】结合课件呈现的情境图谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,同时在学生猜测得不到正确结果的情况下,激发学生的探究兴趣,为下一环节引导学生经历“化繁为简”的解题策略做好铺垫。
二、新知探究。
(一)感受化繁为简的必要性。
刚才大家猜了好几组数据,但是我们验证后发现都不对,为什么这么多人都没有猜对呢?(数太大了)你们觉得什么情况下能够猜对?(数小一些)
那咱们就换一道数小一些的。(课件出示例1)
笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26只脚。鸡和兔各有几只?
(二)自主尝试解决问题。
我们一起来看看在同一个笼子里的鸡和兔给我们带来了哪些数学信息?
找到题中信息:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。
在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
怎样才能确定猜测的结果对不对?(把鸡的腿和兔的腿加起来看是不是等于(把鸡的腿和兔的腿加起来看等不等于26)
这回给你们一点时间,把你猜测的数据在练习本上列个表,算一算,想一想:你算的对吗?(出示表格)
鸡
兔
脚
这回给你们一点时间,把你猜测的数据在练习本上算一算,想一想:你算的对吗?
(三)交流体会,掌握问题解决策略。
1、经历列表法的形成过程。
(1)经过同学们的研究,现在知道鸡和兔各有几只?
都谁和他的结果一样?你们有把握这次猜对了吗?怎么验证一下?
(2)说说你是怎样得出正确答案的?(引导学生说说解决问题的思路)
预设学生思路:
●从鸡8只,兔0只开始推算。
●从鸡0只,兔8只开始推算。
前两种情况可能做了充分预习,按照一定的顺序,列举出了所有情况,或者到得到正确答案为止。对这种有序思考的方法要给予肯定。
●直接猜出鸡有3只,兔有5只,验证后发现脚数正好是26只。
这种情况属于正好一下猜对了,教师提示不一定每次都能够猜得这么准。
●从鸡有4只,兔有4只开始推算。
这种情况猜测的次数比较少,对于数据比较大的时候适用。
●有的同学还可能发现了每增加一只兔,减少一只鸡,脚就增加2只,这样就可以一下子算出需要增加几只兔,直接找到正确答案。这正是假设法的思路。如果有同学有这一发现,教师要及时引导学生表述准确,为后面的假设法学习做好铺垫。
(3)小结收获。从刚才的列表情况看,你觉得怎样列表比较好?
(4)运用列表法解决情境图中的鸡兔同笼问题。
自主解决,交流方法并订正结果。
如果没有出现上面的第五种思路,教师小结可以提出。
小结:鸡兔的总只数不变,多一只兔子就会少一只鸡,增加两只脚;多一只鸡就会少一只兔子,减少两只脚。运用这一规律正好是我们解决这一问题的另一种方法。
2、探究假设法。
(1)问题预设:刚才大家找到了“鸡兔同笼”问题的解决办法,讨论中还发现了一种更简单的方法,如果运用这种推理方法,怎么解决呢?
(2)引导学生交流:发现假设成都是鸡或者都是兔,计算起来会更简便。
交流时重点让学生说说每一步的意思。
先假设成都是鸡,着重说说推理的过程。
同样,让学生说说,如果假设成都是兔,是什么情况?
小结收获。
《鸡兔同笼》教学设计及设计意图12
教学目标:
1.了解鸡兔同笼,初步掌握鸡兔同笼的特征,会初步解决鸡兔同笼问题。
2.经历画图、列表、假设等多种策略解决鸡兔同笼的过程,在交流过程中体会方法的优化。
3.借助画图、列表、假设等方法,沟通方法之间的内在联系,体会“假设”的思想方法。
教学重点:掌握画图法、列表法、假设法解决“鸡兔同笼”问题。
教学难点:体会画图法、列表法中“假设→调整”的方法策略,理解假设法的意义,初步建立“鸡兔同笼”模型。
教学过程:
一、出示古题,揭示课题。
1、组织教学。
2、出示古题,揭示课题。
师:大约1500年前,我国古代有一本数学名著《孙子算经》。它上面记载了很多有趣的数学问题,“鸡兔同笼”就是其中的一个。板书:鸡兔同笼。这个问题是怎么说的呢?我们一起来看看吧。(出示课件:四句话。)
3、理解题意。
师:这四句话是什么意思呢,谁读懂了?请你说一说。
齐读翻译后的题目。
二、研究方法,寻找联系。
1、猜测鸡兔的只数,引入化繁为简的思想。
师:笼子里可能有几只鸡几只兔呢?谁来猜猜看?
师:你们认为这么难猜的原因是什么呢?
师:看来数据太大了,(板书:大,)想要猜对是很困难的。那我们先把数据变小一点(板书:小。),等找到解题的方法之后,答案自然就知道了。
师:为了研究方便,钟老师就把头数统一改为8个,脚数改为26只。大家看这样是不是就简单多了。一起读一读。
2、我们一起先用画图法研究一下:教师课件演示,引发学生思考。
教师课件出示:8个圆圈表示8个头,说明假设全是鸡,引导学生说应该怎么画脚。画完脚后让学生观察,教师提问你发现了什么?(脚的总数少了)。算出有16只脚,可题中有26只脚,这时就出现了什么?学生可能说到:矛盾、差距、偏差……,根据学生的回答板书关键词。
师:这个矛盾是什么?(以矛盾为例)谁来具体说一说。少了10只脚,这时应该怎么做的呢?(需要对这个矛盾进行调整,板书:调整。)。那每次只能增加几只脚?调到什么时候为止?
3、把教材104页的表格填写完整,想想自己是怎么调整的,全班分享汇报。
学生汇报完后,师先带领学生理解表格每行的意义,再看每列的意义。重点看第一列,问:这三个数是什么意思?(引导实际是假设全是鸡,算出有16只脚。)算出有16只脚,可题中有26只脚,这时又出现了矛盾,我们还是需要调整。调整了几次呢?(指名学生回答)
师:出现矛盾后,刚才同学这样一只一只的调,调整了几次才找到正确答案呢?我们一起数一数。(五次)调了五次,那有没有同学能想个办法一步就调整到位呢?(也就是直接看10里面有几个2,那就把几只鸡换成几只兔?)
(2))能把同学刚才一步调到位的过程用算式记录下来吗?我们一起来看,假设全是鸡,大家可以先写上这句话,这样就有几只脚?可以用哪个算式来表示?2×8=16(只),这时出现的矛盾是什么?算式:少26-16=10(只)。少10只脚每次添几只?可以用哪个算式?4-2=2(只),算式中4表示什么意思?这里有2个2,表示的意思相同吗?分别是什么?少的10只脚怎样一步调整到位?用算式怎样表示?为什么?10÷2=5(只),添上脚的5只动物就是(兔),那么剩余的就是(鸡)?算式8-5=3(只)。
看来我们还可以用算式来简单表示一步调整到位的思维过程。下面就请同学们对照黑板上的算式,说一说每一步是怎样想的?
5、如果假设全是兔,又应该怎么做呢
请学生完成学习任务单的填表后全班交流。
假设全是兔,那么就有32只脚。板书。师问:有矛盾吗?那这会儿的矛盾具体是什么呢?多了6只脚就要想办法去掉。每次只能去掉几只呢?所以还是需要调整,数一数调整了几次?那能不能也想办法一步调整到位?能像刚才一样用算式把这个一步调整到位的过程记录下来吗?
师:谁来说一说怎样列式,指名学生说,教师板书。
师:我们看,无论假设全是鸡,还是假设全是兔,都算出了鸡和兔的只数。齐答。能给这种方法取个名字吗?(假设法)
小结:同学们看,今天这节课我们把数据变小了,发现这类问题可以通过画图、列表、列算式的方式来解决,这三种方式其实都有个共同的特点,就是都先进行了假设,发现有了矛盾后,再调整,直到最后得出正确答案。
3.解“古代趣题”。
师:那回过头来,我们看看1500年前的这道古题,数据比较大,你会解答了吗?想一想选哪种方法来解答比较合适呢?
三、课堂练习,巩固提高。
1、龟鹤算。
师:其实,鸡兔同笼问题不仅在我国广泛流传,对整个世界的数学界也有很大的影响。比如传到日本就成了龟鹤算。大家看这个题目(做一做第一题),请个同学读题。和鸡兔同笼问题有关系吗?什么相当于鸡?什么相当于兔?
2.车棚里有自行车和三轮车共20辆,两种车共有49个轮子,问:自行车和三轮车各有多少辆?
师:请大家自由读题。这道题和鸡兔同笼问题有关系吗?有什么关系?
师:大家看,今天这节课,我们研究了鸡兔同笼问题,一开始鸡就是鸡,兔就是兔,后来练习中我们发现既没有鸡也没有兔,不过仔细一分析,我们却发现,其实他们还是属于鸡兔同笼问题。大家一起说,解答这类问题,我们都可以用什么方法?
四、全课总结
回顾这节课,你有什么收获?
师:孩子们真棒,有这么多收获。其实,鸡兔同笼问题的解答方法还有很多,比如金鸡独立法、砍脚法等,感兴趣的同学可以上网查资料,继续研究。
附:板书设计:
鸡兔同笼
假设都是鸡:假设全是兔:
8×2=16(只)8×4=32只大小
26-16=10(只)32-26=6只矛盾
4-2=2(只)4-2=2只调整
兔:10÷2=5(只)鸡:6÷2=3只
鸡:8-5=3(只)兔:8-3=5只
答:鸡有3只,兔有5只。
《鸡兔同笼》教学设计及设计意图13
一、说教材
1.教材分析
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中,也是奥数教材中的经典名题。而新课标揭去了它令人生畏的面纱,正式编入教材,借鸡兔同笼这一问题的解决过程,让学生体会和掌握基本的解决问题的策略,渗透一些数学思想方法,还其生动有趣的一面,这也正是“数学广角”所承载的基本任务。通过学习,不仅能使学生感受到祖先的聪明才智,而且体会到解题策略的多样性以及其中蕴含的丰富的数学思想方法,培养学生探索的兴趣和能力。基于以上分析,我将本课的教学目标确定为以下几点:
2.教学目标
(1)了解“鸡兔同笼”问题,感受古代数学问题的趣味性,从中发现其特殊的规律。
(2)借助列表、画图、假设、方程等方法解决相关的实际问题,体验解决问题方法的多样化,体会代数方法的一般性。
(3)培养学生的逻辑推理能力,让学生体会到数学问题在日常生活中的应用价值。
3.教学重难点
教学重点:尝试用不同的方法解决“鸡兔同笼”问题。
教学难点:探索用多种方法解决同一问题的策略。
二、说教学方法
本课教学力求改变过去重知识轻能力、重结果轻过程、重教法轻学法的状况,在教学过程中我主要采用猜测尝试、自主探究、小组合作、讨论交流等方法组织教学,引导学生经历解决问题策略的探索过程,体验学习的乐趣,感受数学的价值。
三、说教学流程
1.问题引入,揭示课题
我们都知道:“儿童是有个性的人,他们的活动受兴趣和需要的支配,一切有效活动必须以某种兴趣作为先决条件。”新课开始,我出示《孙子算经》中的鸡兔同笼问题,并通过小精灵挑战性的提问“这个问题你能解决吗” 唤起学生解答我国古代著名数学问题的兴趣,产生探究的欲望,既为下面的学习做好了心理铺垫,又自然地引出了课题。
2.自主探究,学习新知
(1)呈现探究素材。笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?
【设计意图:此环节考虑到“鸡兔同笼”原题的数据较大,不便于学生探究学习,因此,我根据化难为易的思想,避繁就简,用这个数据较小的同类问题进行替换,消除了学生因为数据过大而产生的恐惧心理,贴近学生的“最近发展区”,增强了探究的自信心。】
(2)出示探究提纲。
①从题中你得到了哪些数学信息?联系生活实际,想一想鸡和兔各有几只脚?(看似简单又是现实中司空见惯的指向性问题,恰好是解决“鸡兔同笼”问题的必经之路,也是关键所在,它的出示确保了学生自学的效果。)
②请自学课本第113―114页的内容,并标注出你不理解的地方。(当学生俯下身子静心自学时,我充分关注学生的自学表现,借助眼神或表情提示不够专注的学生,收集梳理学生自学时遇到的疑惑,为下一步合作学习做好准备。)
③自由选择合作伙伴,讨论解决自学中遇到的困惑,理解不同的解题思路。(有困难才合作,有问题才讨论。让学生根据自己的需求选择合作伙伴,可以是同桌互助,可以是小组合作,也可以是师生互动,营造出活而不乱的学习氛围。)
【设计意图:自主学习是新课程改革的主旋律,“以学生为主体”是当代教学的基本思想,也是学生终生学习的基础。但是,学生由于认知能力的局限,在自学课本时往往不能很到位地理解某些知识,形成思考后的思维断点,产生模糊的认识。为了避免学生自学的盲目性,确保自学环节的实效,使学生养成有序思考的习惯,我设计了以上三个探究提纲。】
3.汇报交流,深化理解
学生通过自主探究、同伴互助,已经有了自己解决这个问题的方法,这时组织学生在全班展示交流,他们个个有话可说,争先表达,说出了解决同一问题的多种方法。
(1)列表法:通过填写教材中提供的表格,多数学生不重复、不遗漏地写出了所有答案,也就是“逐一列表法”。还有部分反应较快的学生受到“逐一列表法”的启发,通过估计,发现了鸡兔只数的大致范围,即“跳跃列表法”。更有甚者,提出了较为简便的“取中列表法”。
(这时我对学生的积极表现给予及时的肯定,正在学生得意之时,我追问:“还有其他的方法吗?”唤起了他们更强烈的表达欲望。)
(2)画图法:动手能力较强的学生,用“”表示头,用“|”表示脚。先画8个头,有的学生给每个头下画了2只脚,共有16只脚,比题中给出的脚少了10只,2只2只地添,添5次刚好26只脚,得到笼中有3只鸡、5只兔;也有的学生给每个头下都画4只脚,结果比题中给出的脚多了6只,2只2只地划去,划3次后刚好是26只脚,得到了相同的答案。
【设计意图:“数无形,少直观;形无数,难入微。”利用数形结合,使抽象的鸡兔同笼问题直观化、生动化,也为理解假设法做好了铺垫。】
(3)假设法:学生利用已有的经验还发现了用“假设法”解答此题的思路,先假设全部都是鸡或全部都是兔,再计算实际与假设之间总脚数的差,最后推理出鸡和兔的只数。
方法一:
解:设全是鸡。
8×2=16(只脚)
26-16=10(只脚)
兔:10÷(4-2)=5(只)
鸡:8-5=3(只)
答:有兔5只,有鸡3只。
(4)方程法:当有学生提出用方程解答这个问题时,我顺势引导,让全体学生都参与到分析说理的过程,突出了代数方法的一般性。
方法一:
解:设有兔x只,有鸡(8-x)只。
4x+2(8-x)=26
4x+16-2x=26
16+2x=26
2x=26-16
x=5
鸡:8-5=3(只)
答:有兔5只,有鸡3只。
【设计意图:此环节,我组织学生全班交流,旨在使他们分享自学成果、产生思维共鸣,感受到同一个问题竟然有这么多的解法!整个课堂也因此而精彩不断。】
4.运用新知,回扣主题
以数据较小的“鸡兔同笼”问题为载体,使学生在经历自学找疑、合作解疑、交流提升的过程中掌握了“鸡兔同笼”问题中所蕴含的多种数学思想方法,再去解决课前设问的《孙子算经》中鸡兔同笼的原题,既巩固了所学知识,又回扣了主题。“你想知道古人是怎样解决‘鸡兔同笼’问题的吗?”自然地把学生的注意力吸引到课本114页阅读资料上来了。
5.变式练习,拓展延伸
(1)有龟和鹤共40只,龟的腿和鹤的腿共有112条,龟、鹤各有几只?
(2)大船乘6人,小船乘4人,全班一共有38人,共租了8条船,每条船都坐满了,大小船各租了几条?
《鸡兔同笼》教学设计及设计意图14
教学目标:
1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。
2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。
3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。
教学重点:会用假设法和方程法解答“鸡兔同笼”问题。
教学难点:明白用假设法解决“鸡兔同笼”问题的算理。
教学用具:
多媒体课件。
教学过程:
一、创设情境,引入新课。
1、引入:
同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?
这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。
为便于研究,我们先从简单的生活问题入手,请看下面问题。
●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?
【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。
二、自主学习、小组探究
对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。
温馨提示:
①用列举法怎样解决问题?
②你能用画图的方法解答吗?
③如果把这些票都看成学生票或都看成成人票如何解答?
④回顾列方程解决问题的经验,怎样用方程解决问题?
学生自己根据提示用自己喜欢的方法解决问题。
先把自己的想法在小组内说一说,再共同协商解决。
教师巡视,要注意发现学生的不同解法,同时参与小组的指导。
三、汇报交流,评价质疑
对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。
1.列举法。
可以有目的的先展示这种方法。(多媒体展示。)
学生票数(张)成人票数(张)钱数(元)
2525250
2426252
2327254
2228256
2129258
2030260
质疑:有50张票,是否有必要一一列举,你是如何列举的?
(引导学生通常先从总数的中间数列举。)
质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?
(引导学生根据数据特点确定调整方向、调整幅度。)
师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)
2.假设法
(1)假设全是成人票:
①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)
②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。
(学生试着列算式,请两个学生到黑板上去板演。)
预设板演:
50×6=300(元)300-260=40(元)40÷(6-4)=20(张)
50-20=30(张)
③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?
预设回答:
假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。
而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。
(2)假设全是学生票:
如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)
总结方法归纳抽象出这类问题的模型。
学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).
成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).
3、方程法:
除了以上两种方法,还有别的计算方法了吗?
学生汇报列方程的方法。
(1)找出相等的数量关系。
(学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260
元)
(2)根据等量关系列式:
设成人票有x张,则学生票有(50-x)张。
列方程为:6x+4(50-x)=260
(解略)
4.学生比较以上几种方法解题方法。
四、抽象概括,总结提升。
让学生结合自己解决问题的经验,用自己的语言进行总结。
列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。
画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。
假设法:适合所有的这类问题,但比较抽象,不好理解。
方程法:适用面广,便捷,容易理解。
师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。
【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。
五、巩固应用,拓展提高
1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)
温馨提示:
A.先让学生认真读题,(同桌讨论)。
B.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。
2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?
处理方法:
①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。
②小组内交流算法。
③全班交流。
【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。
3、巩固练习:回应解决例题,引导学生用合适的.方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)
【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。
3、全课小结:
回顾总结,引发思考
本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。
师总结:
这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。
《鸡兔同笼》教学设计及设计意图15
教学目标:
1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。
教学重点:会用画图法、列表法和假设法解答“鸡兔同笼”问题。
教学难点:用合理的方法解答生活中的“鸡兔同笼”问题。
教具准备:多媒体课件、表格等。
教学过程:
一、创设情境、揭示课题。
1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?
2.播放视频,介绍:20xx年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。
这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著, 今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。(板书课题)
2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。
出示题目:鸡兔同笼一共有8个头,一共有26条腿。 鸡和兔各有几只?
二、合作探究、学习新知:
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流
1.师:请大家自由读题,你们都知道了什么信息?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?
师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?
学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。
(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。
(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。
(汇报交流)
小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。
活动二:探究用假设法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流。
小组1:假设全都是鸡:2×8=16(条)26-16=10(条) 10÷2=5(只)??兔子 8-5=3(只)??鸡 谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”
师:除了可以假设都是鸡,还可以怎样假设呢?
小组2:引导学生说出都是兔,并演示。
师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?
师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
3、发散思考、加深理解。
下面我们来帮陈赫找到他房间的密码,解放他吧!
出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?
师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?
生:是什么样的假设法,让我们先睹为快!
师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?
生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。
生:鸡的只数为:35-12 = 23(只)。
关于《鸡兔同笼》教学设计及设计意图教案汇总的内容就收集整理到这里了,希望可以对有需要的朋友们提供一些帮助,大家可以结合实际情况来参考以上范文,以此来帮助自己顺利展开书写工作。如果这期内容对大家有所帮助,也请大家多关注本站。
本内容由qingfan收集整理,不代表本站观点,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:https://wenku.puchedu.cn/52830.html