六年级数学是小学数学的高级阶段,主要涵盖了代数、几何、统计和概率等知识领域。在这个阶段,学生需要掌握各种数学概念、方法和技能,如代数方程、图形和测量、统计图表和概率计算等。六年级数学还注重培养学生的数学思维、问题解决能力和推理能力,为初中数学学习打下坚实的基础。下面是小编精心整理的小学六年级计算数学公式必备大全归纳总结完整版,欢迎大家阅读!

文章目录
六年级数学公式大全
常用的数量关系式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形 (C:周长 S:面积 a:边长 )
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
常用单位换算
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒
小学六年级必背数学公式
长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年1年=12
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,闰年2月29天
每4年有一次闰年
平年全年365天,闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
小学数学几何形体周长面积体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a=a
5、三角形的面积=底×高÷2 2S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2
8、直径=半径×2d=2r半径=直径÷2 r=d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr
10、圆的面积=圆周率×半径×半径
定义定理公式
三角形的面积=底×高÷2。 公式S=a×h÷2
正方形的面积=边长×边长 公式S=a×a
长方形的面积=长×宽 公式S=a×b
平行四边形的面积=底×高 公式S=a×h
梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
数学小学六年级公式必看
1每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4 工效×工时=工作总量 工作总量÷工效=工时 工作总量÷工时=工效
5、 加数+加数=和 和-一个加数=另一个加数
6、 被减数-减数=差 被减数-差=减数 差+减数=被减数
7、 因数×因数=积 积÷一个因数=另一个因数
8、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 被除数=除数×商+余数
注意:0.3÷0.2=1 。。。0.1 除数与被除数同时扩大100倍,商不变,余数也扩大100倍。
9 平均数=总数÷总份数 平均速度=总路程÷总时间
10.相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间 一个人的速度=相遇路程÷相遇时间-另一个人的速度
11.平均速度问题 平均速度=总路程÷(顺流时间+逆流时间)注意: 折(往)返=路程×2
12.浓度问题: 溶质(药)+溶剂(水)=溶液(药水) 溶质(药)÷溶液(药水)=浓度
溶液(药水)×浓度=溶质(药) 溶质(药)÷浓度=溶液(药水)
13.折扣问题: 折扣=现价÷原价 (折扣<1) 现价=原价×折扣 原价=现价÷折扣
利息=本金×年利率×时间(年) =本金×月利率×时间(月)
14比例尺=图上距离÷实际距离 实际距离=图上距离÷比例尺 图上距离=实际距离×比例尺
税后利息=本金×利率×时间×(1-5%)
15追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
小学六年级数学公式大全:工程问题公式
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)
小学六年级数学数量关系计算公式大全
数量关系计算公式方面
1.单价×数量=总价
2.单产量×数量=总产量
3.速度×时间=路程
4.工效×时间=工作总量
单位换算
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
(4)1吨=1000千克1千克=1000克=1公斤=2市斤
(5)1公顷=10000平方米1亩=666.666平方米
(6)1升=1立方分米=1000毫升1毫升=1立方厘米
小学六年级数学概念和公式汇总
一、分数乘法
1、 分数乘整数,用分数的分子与整数相乘的积作分子,分母不变。
2、 分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
3、 求一个数的几分之几是多少用乘法计算(一个数×=具体量)。能约分的先约分再乘。
二、分数除法
1、 乘积是1的两个数 互为倒数。
2、分数除以整数(0除外),等于分数乘这个数的倒数。
3、整数除以分数,就是整数乘这个数的倒数。
4、甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5、单位“1”(一个数)×=具体量
具体量÷单位“1”(一个数)=
【已知一个数的几分之几是多少,求这个数】 单位“1”(一个数)=具体量÷
三、圆
1、 画圆时固定的一点是圆心,圆心一般用字母o表示。
2、 圆上任意一点到圆心的线段是半径,半径一般用字母r表示。通过圆心且两端都在圆上的线段是直径,直径一般用字母d表示。r= d=2 r
3、 圆的大小和半径有关,圆的位置和圆心有关。
4、 圆的周长总是直径的3倍多一些,圆的周长除以直径的商是一个固定的数,把它叫做圆周率,用字母∏(读pài)表示。计算时通常取它的近似值∏=3.14。
5、 周长C=πd=2πr d=
=C÷π
r=
=C÷2π=C÷π÷2= C÷2π
6、 圆面积S=πr2 =π()2
7、 扇形面积=大圆面积-小圆面积=πr2大-πr2小=π(r2大-r小2)
8、 由圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。在同一个圆内,扇形型的大小与这个扇形的圆心角的大小有关。
四、比和按比例分配
1、 两个数相除又叫做这两个数的比。
2、 比和除法、分数的关系
比 | 前 项 | 比 号 | 后 项 | 比 值 |
除 法 | 被除数 | 除 号 | 除 数 | 商 |
分 数 | 分 子 | 分数线 | 分 母 | 分数值 |
比和除法、分数的区别:
比 前 项 ∶ (比 号) 后项 比值是—种 相除关系。
除法被除数 ÷ (除 号) 除数 商是一种 运算。
分 数 分子 — (分数线) 分母 分数值是一 种数。
3、比的后项和除数、分母一样不能为0。
4、比值可以用分数表示,也可以用小数或整数表示。
5、比的前项和后项同时乘或除以一个相同的数(0除外),比值不变,这叫做比的基本性质。
6、把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。
五、图形的变换和确定位置
1、形状相同而大小不同的图形叫做相似图形。
2、比例尺就是图上距离与实际距离的比,就是
图上距离:实际距离==比例尺
图上距离=实际距离×比例尺
实际距离=图上距离÷比例尺
3、 确定观测点后,知道物体的方向和位置就能确定物体的位置。
附数量关系式:
1、加 数+加 数=和 加数=和-另一个加数
2、被减数-减数=差 减数=被减数 - 差
被减数=减数+差
3、因 数×因 数=积 因数=积÷另一个因数
4、被除数÷除数=商 除数=被 除 数÷商
被除数=商×除数
5、路程=速度×时间 速度=路 程÷时 间
时间=路程÷速度
6、单价×数量=总价 单价=总 价÷数 量
数量=总价÷单价
7、折扣=实际售价÷原售价 实际售价=原售价×折扣
原售价=实际售价÷折扣
8、工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
9、常用单位进率:
长度:1千米=1000米 1米=10分米=100厘米 1 分米=10厘米
面积:1公顷=10000平方米 1 平方米=100平方分米=10000平方厘米
1平方分米=100平方厘米 1平方千米=1000000平方米
体积:1立方米=1000立方分米=1000000立方厘米 1立方分米=1000立方厘米
容积:1立方分米=1升=1000毫升
重量:1吨=1000千克 1千克=1000克 1克=1000毫克 1斤=500克
10、小学数学图形计算公式
⑴ 正方形 :C周长 S面积 a边长
周长=边长×4 C=4a
边长=周长÷4 面积=边长×边长
S=a×a
⑵ 正方体: V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长
V=a×a×a
⑶长方形: C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b) 面积=长×宽(S=ab)
a=S÷b
b=S÷a
⑷长方体: V:体积 S:面积 a:长 b: 宽 h:高
表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh) 体积=长×宽×高
V=abh
⑸ 三角形: S面积 a底 h高
面积=底×高÷2 S=ah÷2
三角形高=面积×2÷底
三角形底=面积×2÷高
⑹平行四边形: S面积 a底 h高
面积=底×高 S=ah
底=面积÷高 (a=S÷h)
高=面积÷底(h=S÷a)
⑺梯形 :S面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 S=(a+b)× h÷2
高=面积×2÷(上底+下底)
上底=面积×2÷高-下底
下底=面积×2÷高-上底
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 、1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积×2÷底
三角形底=面积×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S=面积 C=周长 πd=直径 r=半径
(1)周长=直径×π=2×π×半径
C=πd=2πr
(2)面积=半径×半径×π
9 圆柱体
v=体积 h=高 s=底面积 r=底面半径 c=底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v=体积 h=高 s=底面积 r=底面半径
体积=底面积×高÷3
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题的公式
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1非封闭线路上的植树问题主要可分为以下三种情况:
(1)如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
(3)如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质(如盐)的重量+溶剂(如水)的重量=溶液的重量
溶质的重量÷溶液的重量=浓度(含盐率、含糖率等)
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本=×100%(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
小学六年级数学应用题常用公式大全
1、【和差问题公式】 (和+差)÷2=较大数; (和-差)÷2=较小数。
2、【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或和-一倍数=另一数。
3、【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或较小数+差=较大数。
4、【平均数问题公式】
总数量÷总份数=平均数。
5、【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
6、【反向行程问题公式】
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
9、【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)
11、【盈亏问题公式】
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(发)
或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏÷(两次每人分配数的差)=人数。
(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈÷(两次每人分配数的差)=人数。
(例略)
以上是小学六年级计算数学公式必备大全归纳总结完整版的所有内容,希望读者能够从中获得一些有益的信息和启示。谢谢阅读!
本内容由zhenzhen收集整理,不代表本站观点,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:https://wenku.puchedu.cn/61863.html