比的知识点 有关比的知识点汇总归纳

比较是数学中的一种基本运算,我们在日常生活中也经常使用比较。比较的概念涉及数值大小、大小关系以及比较运算符等内容。在学习比的知识点时,我们需要掌握比较的基本概念和运算方法,以及在实际问题中如何使用比较运算符进行计算和判断。本文将介绍比的知识点,帮助读者更好地理解和应用比较运算。

比的知识点 有关比的知识点汇总归纳

比的知识点1

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)

15  ∶   10  =  3/2

前项 比号 后项    比值

3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。

也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)

例如:15∶ 10 =15÷10=15/10=3/2

比的知识点2

比的意义和性质

(1)比的意义:两个数相除又叫作两个数的比。

(2)比的性质: 比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫作比的基本性质。

(3)求比值和化简比

求比值的方法:用比的前项除以后项,它的结果是一个数字可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺:

图上距离:实际距离=比例尺

要求会求比例尺:已知图上距离和比例尺求实际距离;

已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

比的知识点3

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

(2)用求比值的方法。注意: 最后结果要写成比的形式。

例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2

还可以15∶10 = 15÷10 = 3/2   最简整数比是3∶2

5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。

6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

1+4=5 糖占1/5 用 25×1/5得到糖的数量,水占4/5 用 25×4/5得到水的数量。

2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?新 课 标 第 一 网

糖和水的份数一共有1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4

比的知识点4

比例的意义和性质

(1)比例的意义

表示两个比相等的式子叫作比例。

组成比例的四个数,叫作比例的项。

两端的两项叫做外项,中间的两项叫作内项。

(2)比例的性质

在比例里,两个外项的积等于两个两个内向的积。这叫作比例的基本性质。

(3)解比例: 根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例的另外一个未知项。求比例中的未知项,叫作解比例。

“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫作比值。 同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。 比值通常用分数表示,也可以用小数表示,有时也可能是整数。 比的后项不能是零。 根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫作按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

比的知识点5

比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。

比值:比的前项除以后项的商,叫做比值。

比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。

比例:表示两个比相等的式子叫做比例。a:b=c:d或

比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。

正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。

反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。

比例尺:图上距离与实际距离的比叫做比例尺。

按比例分配:把几个数按一定比例分成几份,叫按比例分配。

比的知识点6

正比例和反比例

(1)成正比例的量: 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫作正比例关系。

用字母表示: y/x=k(一定)

(2)成反比例的量: 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫作反比例关系。

用字母表示: x×y=k(一定)

其次,通过以上对比和比例的重点知识内容的梳理以及各类题型在解决问题时所需要注意的重要内容,想要切实地把这些技巧和方法在实际用当中能够熟练使用,唐老师将通过经典的常考题型的解析来给大家分析如何利用这些技巧以及其应用时应当注意的事项。

不同的题型在解题时对题目的分析如何与所学的知识点以及重要的公式内容相契合,这时就需要我们找到题目条件当中一些比较关键的此或者是数量关系,这对于解决问题来说至关重要。

比的知识点7

1、比的意义

两个数相除又叫做两个数的比。

“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比例的意义

表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

比的知识点8

比的知识要点

1、两个数相除叫做两个数的比。

2、比、分数、除法三者之间既有联系,又有区别。

3、比的前项和比的后项同时乘以或除以相同的数(0除外)比值不变,这叫做比的基本性质。

4、应用比的基本性质可以化简比。

5、用比的前项除以比的后项,所得的商叫比值。比值可以是整数、分数、小数。

比例的知识要点

1、表示两个比相等的式子叫做比例。

2、在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

3、应用比例的基本性质可以解比例、组比例,还可以求两个数的比。

4、图上距离和实际距离的比,叫做比例尺。

比的知识点9

1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例的关系式:y x=k (一定)

2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:xy =k (一定) 3、判断正、反比例的方法:一找二看三判断

(1)找变量:分析数量关系,确定哪两种量是相关联的量。

(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例

比例的知识点总结:比的意义:(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。比例尺:图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。方法:首先求出各部分占总量的几分之几,然后求出总数的几。

比的知识点11

(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。

(2)解题方法

一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少。

归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)”,再用“一份的量各部分量所对应的份数”,求出各部分的量。用比例知识解答:首先设未知量为。再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x 的比例式,再解比例求出x 。

2、用正、反比例知识解答应用题的步骤

(1)分析数量关系。判断成什么比例。

(2)找等量关系。如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。

(3)解比例式。设未知数为x ,并代入等量关系式,得正比例式或反比例式。

(4)解比例。

(5)检验并写出答语。

比的知识点12

1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例的关系式:y x=k (一定)

2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:xy =k (一定) 3、判断正、反比例的方法:一找二

看三判断

(1)找变量:分析数量关系,确定哪两种量是相关联的量。

(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例

比的知识点13

1.比例的意义和组成部分:表示两个比相等的式子叫做比例。组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

2.比例的基本性质:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

3.比和比例的区别

(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

4.解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。

5.成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫正比例关系。用字母表示=k(一定)。

6.成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)。

7.判断两种量成正比例还是成反比例的方法:先要看它们的变化规律,关键是看这两个相关联的量中相对的两个数的比值(商)一定还是乘积一定,如果商一定,就成正比例;如果乘积一定,就成反比例。

比的知识点14

理解比的基本意义;区分开比值和化简比;

1、几种比的化简方法:

①整数比化简,比的前项和后项同时除以它们的最大公约数。

②小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简。

③分数比化简,一般先把比的前项、后项同时乘以分母的最小公倍数,使它成为整数比,再用第一种说法化简。

④也可以用求比值的方法化简,求出比值后再写成比的形式。掌握比例尺意义,会根据比例尺求图上距离和实际距离;

2、掌握三连比性质及应用;

3、掌握分数、百分数、小数互化

4、①百分数、小数互化:a、小数化百分数把小数点向右移动两位,添上百分符号(%)  b、百分数化小数时,先去掉百分号,再把小数点向左移动两位。

②分数化百分数通常先把分数化成小数,再按小数化成百分数方法去化百分数。(有时也可以先把分数化成分母是100的分数,再改写成百分数)

③百分数化成分数的方法:先把百分数改写成分母是100的分数,再约分成最简分数。

理解百分率及相关应用题

5、发芽率=发芽种子数/试验种子数×100%

产品的合格率=合格的产品数/产品总数×100%

出油率=榨油的质量/油料的质量×100%

含盐率=盐的质量/盐水的质量×100%

含糖率=糖的质量/糖水的质量×100%

达标率=达标数/总数×100%

命中率=命中数/总次数×100%

及格率=及格人数/总人数×100%

出勤率=出勤人数/应出勤人数×100%

比的知识点15

比例的应用

(1)比例尺的意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。图上距离=比例尺实际距离

(2)比例尺的分类:数值比例尺和线段比例尺。(数值比例尺的前项和后项单位要一样,一般是厘米。而线段比例尺的前项和后项单位不一样,比如课本54页学习必备精品知识点做一做的那个,它表示图上1厘米相当于实际距离600米。)缩小的比例尺和放大的比例尺。(缩小的比例尺比如1︰300000,放大的比例尺比如2︰1)

(3)要会求比例尺:根据比例尺的意义,写出图上距离︰实际距离的比,单位化成一样并化简,一般要写成前项或后项是1的比。

(4)会根据比例尺、图上距离、实际距离三者之间的关系来求图上距离和实际距离。会用比例尺来画图。(请认真复习课本第54到58页的例题和练习)

相关方法:实际距离×比例尺=图上距离图上距离÷比例尺=实际距离图上距离÷实际距离=比例尺

(5)图形的放大与缩小:按照比例尺把图形的各边相应缩小或放大,所得的图形只是大小发生了改变(这里的大小指的是边长的长短),形状还是与原来相同。

总之,比的概念和运算在数学中扮演着重要的角色,也是我们日常生活中难以避免的部分。通过本文的介绍,希望读者能够更加深入地理解和掌握比的知识点,从而在实际问题中运用比较运算符进行计算和判断。

本内容由学无止jin收集整理,不代表本站观点,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:https://wenku.puchedu.cn/26596.html

(1)
学无止jin的头像学无止jin

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注